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The author considers an operator T in a reflexive Banach
space X for which there is a bounded operational calculus
a -»a{T) defined on AC(I), the algebra of absolutely continuous
functions defined on / = [0,1] with the norm | α(0) | + Varj (a)
for a 6 AC(I). Such operators, called well-bounded, have been
investigated by Smart and Ringrose (J. Australian Math. Soc.
1 (1960), 319-343 and Proc. London Math. Soc. (3) 13 (1963),
613-638). The present paper explores a new method for
obtaining the spectral theorem for this operator. Let AC0 be
the maximal ideal of members of AC(I) which are zero at 0.
The method consists in introducing Arens multiplication into
AC?*, the second conjugate space of AC0, and in investigating
the larger algebra for a suitable family of idempotents which
will serve as candidates for bounded spectral projections
associated with T, Idempotents in ACt* are mapped into
these projections by means of a homomorphism extension
technique which extends the original operational calculus of
ACQ into B(X) (the bounded linear operators on X), to a
bounded homomorphism of ACt* into B(X). The extended
homomorphism is defined on a quotient algebra of ACt*. This
quotient algebra turns out to be a copy of all functions of
bounded variation on I which are zero at 0 under the usual
pointwise operations.

Let AC(I) be the complex algebra of complex-valued, absolutely

continuous functions on I — [0,1] with the algebraic operations being

the usual addition and multiplication of functions. This algebra is a

Banach algebra under the norm (see Section 3)

(1.0.1) II a || = I α(0) | + Var (a) , ae AC(I) .
I

We shall consider a linear operator T in a reflexive Banach space

X for which there is an operational calculus a-+a(T) satisfying

\\a(T)\\^K\\a\\, aeAC(I).

This operator, an example of a well-bounded operator, was introduced

by Smart [14]. Smart showed that T determines a bounded, strongly
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continuous family of projections {Et}, indexed on the real line, and he
proved the existence of the scalar operator

Sx = \tdEtx , xeX .

Ringrose [12] established that S — T and has recently [13] given a
more comprehensive treatment in which he considers the nonreflexive
situation.

In the present paper we explore a new method for obtaining the
spectral theorem for this operator in a reflexive Banach space. Let
ACQ be the maximal ideal of members of AC(I) which are zero at 0.
Our method consists in introducing Arens multiplication into AC$*,
the second conjugate space of AC0, and in investigating the larger
algebra for a suitable family of idempotents which will serve as
candidates for Smart's projections. The algebra AC$* is neither
commutative nor semi-simple. Idempotents in this algebra are mapped
into projections in J5(X), the algebra of bounded operators on X, by
means of a homomorphism extension technique which extends the
original operational calculus a—>a(T) defined on AC0 to a bounded
homomorphism of AC** into B(X). Kamowitz has used this extension
procedure in [9]. When X is reflexive, the extended homomorphism
is defined on a quotient algebra of AC**. This quotient algebra is a
copy of BV0, the algebra of functions of bounded variation on I which
are zero at 0 (cf. [15]).

The algebra AC0 and its conjugate spaces are discussed in Sections
3 through 5. The extension theorem is in Section 6 and Section 7 is
concerned with the well-bounded operator.

2 Preliminary notions. If X is a Banach space, X* and X**
will denote the conjugate space and second conjugate space of X,
respectively. The natural embedding of X into X** will be written
x—>x, where x(x*) — x*(x) for x* in X*. It is well known that X
is dense in X** when the latter space is provided with the weak*-
topology [4, p. 425]. Let A be a Banach algebra, with unit or not,
commutative or not, with elements α, δ, . Let the elements of A*
be written f,g, . Denote those of A** by ζ, η, . Arens multi-
plication is introduced into A** in three stages as follows: for fe A*
and aeA,fOaeA* is defined by (fQa)(b)=f(ab), for be A. If
)?eA** and/eA*, τ?0/eA* is defined by (?0/)(α) = ^ ( / 0 α ) , for
ae A. Finally, let ξ,ηe A** be given. Then ξ 0 η e A** is defined
by (£©?)(/) = £(?Θ A for fe A*. It follows that \\ξQV\\ £ \\ξ\\ \\V\\.
The map 0 is bounded and bilinear at each stage of definition. As
is noted in [1,2], 0 is an associative multiplication in A**, making
this space into a Banach algebra under the usual norm. The natural
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map a-+ά is an isometric algebraic isomorphism, and if A is commuta-
tive, A is in the center of A**. Finally, we recall that for fixed
)?€A**, the product ξ Qη is weak*-continuous in feA**, and for
fixed ae A,aQη is weak*-continuous in ηe A**. We note that A**
need not be commutative nor semi-simple even when A is (see Sec. 4,

[3]).
Let X, Y and Z be Banach spaces. Let Δ be a bilinear map of

X x Y into Z (written (as, y) ~* xΔy) and suppose that

is finite. Following Arens [2], we define the adjoint of Δ by the
map Δ* : Z* x X —> Γ* ((«*, α?) —> 2*J*a?) where we put (s* J*α?)(2/) =
z*(xΔy), for 2* e i?*, $ e X, and yeY. It is easy to see that zf* is
bilinear and has the same norm as Δ. In later sections we shall always
consider a second conjugate space of a Banach algebra as a Banach
algebra.

3* Absolutely continuous functions* Let AC0 be the complex
algebra of absolutely continuous complex-valued functions on I = [0, 1]
which are zero at 0, with the usual multiplication and addition for
functions. In this section, the formula for the Arens multiplication
in AC** is derived in terms of corresponding finitely additive set
functions.

Let Lλ be the complex space Lt{I, £f, m} where Jίf is the σ-algebra
of Lebesgue measurable subsets of I and m is Lebesgue measure.
Consider the norm on AC0 given by

= [
JI

= Var(α), aeAC0

where α' is the almost everywhere derivative of α. The map a—*af

is an isometric isomorphism between AC0 with this norm and LlΦ A
crude estimate yields \\άb || ^ 2 || a \\ \\ b | |. This norm is actually
submultiplicative on ACQ.

LEMMA 3.1. Under the above norm, AC0 is a Banach algebra.

Proof. It is convenient to prove the lemma in Lx. Let

(f°g)(t) = f(t)\tg(s)ds + g(t) \tf(s)ds ,
Jo Jo

for /, g in L1 and te I. This is a copy of the multiplication in ACQ.
We must show t h a t Wfogl^ ^ \\f\\i \\ g \\u where || ^ denotes the Lx

norm. The product fog is continuous in / and g since Wfog]]^
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2 \\f\\i II g Hi. Hence, it is sufficient to verify the inequality we want
for linear combinations of characteristic functions of intervals as these
are dense in Lx. Suppose that whenever e and d are intervals from /,
|| keokd Hi ̂  || ke Hi || kd \\u where ke and kd are the characteristic functions
of e and d. If / = Σ ^ ί ^ a n d 0 = Σ A fc^, where the intervals ei

are pairwise disjoint and the intervals dά are pairwise disjoint, then
II/Hi = Σ \ai I II &β< Hi a n ( i a similar statement holds for g. Thus,

/o fir = ( Σ a ^ ) ° ( Σ 0 A,)

and

Hence, it is enough to establish the inequality for two characteristic
functions of intervals. This is straightforward and will be omitted.

If the unit function e(t) — 1 is adjoined to AC0, we obtain all
absolutely continuous functions on I, AC (I) = ACQ 0 {λe}, λ complex.
This algebra is a Banach algebra under the norm || 6 || = | 6(0) | + Var (b)
by Lemma 3.1. Each maximal ideal of AC(I) consists of all of those
functions which vanish at a point tel([lθ, the lemma on page 55]).
Equivalently, each multiplicative linear functional on AC(I) is a point
evaluation b—+b(t).

LEMMA 3.2. The nonzero multiplicative linear functional^ on
AC0 are of the form μt(a) = a(t), 0 < ί g l , α e ACo.

Proof. If μ is a multiplicative linear functional on AC0, it extends
to a multiplicative linear functional σ on ACoφ{λβ} given by σ(a + λβ) =
μ(a) + λ. Since a is a point evaluation, μ is a point evaluation as
stated.

The spaces AC0, AC0* and AC0** may be identified, respectively,
with the spaces Lu L^ and L*, where L^ is the complex space LJJ, jSf, m}
with essential supremum norm which we will denote by ΛΓ

OO( ). It is
well known that Li is isometrically isomorphic with the complex
Banach space ba{I, j£f, m) consisting of all finitely additive, complex-
valued set functions f defined on Sf, which vanish on Lebesgue null
sets and which have finite total variation on I with respect to ^f
([4, p. 296]). The total variation of ξ on a set EzSf, with respect
to jSf, is given by

where the supremum is taken over all partitions of E into a finite
union of mutually disjoint sets Ei from Jέf.
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In order to simplify notation we will use the same symbol for
corresponding elements in equivalent spaces. Whether a symbol denotes
a functional or a point or set function should be evident from the
context. Thus, we have the following formulas:

f(a) = ^f(s)a'(s)ds , feAC*,ae AC,

£(/) = \f(*)dξ(8) , fe ACS, ξ e ACt

where | | / | | = N4f) and || ξ || = Var^ (ξ, I).
The notion of integration of LM functions with respect to finitely

additive set functions as in formula (3.2.1) may be defined as follows:
for ξ 6 ba{I, _Sf, m}, feL.,Ee£f, let

ί f(s)dξ(s) = lim ( fn(s)dξ(s)

where fn(έ) — X ocinkEin{s), n = 1, 2, 3, , is a sequence of finite linear
combinations of characteristic functions of disjoint sets from £f such
that N«,(f - fn) -> 0 and where

This integral is finitely additive on ^f and

f(s)dξ(s) ^i\Γ4/)Var^ (ξ,E).

The formulas for the Arens multiplication are computed next.

LEMMA 3.3. If fe AC$, a e AC0, then for almost all tel,

(fQa)(t) - JV(β)α'(β)dβ + /(t)α(t) .

Proof. Let JF(£) = (V(β)α'(8)d8. Then F\t) = -f(t)a'(t) for

almost all ί e /. If δ G 4̂C0 is arbitrary,

(/0c)(5) - /(αδ) = j i

f f(t)a(t)V(t)dt .

Since ί7 and b are absolutely continuous, we may integrate the integral
containing F' by parts to obtain
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F(t)b(t)]l ^

F(t) + f(t)a(t)W(t)dt .

Thus, for arbitrary b e AC0,

(/Θ a)(b) =

The lemma now follows.

LEMMA 3.4. // / is continuous on I and ξ eba{I, jSf, m} and
h(s) = f ((0, s)) /or 0 < s ^ 1, A(0) = 0, then

where the second integral is a Riemann-Stieltjes integral.

Proof. The total variation of h on I,

Var (h) - sup {Σ | fe(Si) - fe(Si-1) | : 0 = s0 < . . . < sn =

does not exceed Var^ (f, I), by definition of fe and the finite additivity
of ξ. By uniform continuity, / can be approximated uniformly on I
by step functions of the form

where ê  is an interval with end points s^, Sf, s e β̂  and 0 =
s0 < < sn — 1. The integral of fz with respect to f is the Riemann-
Stieltjes sum

and

5 - (Λ g ε l l f l l

LEMMA 3.5. // ηeACf* and feACf, then for almost all tel9

Proof. Let 6 e AC0 be arbitrary. Then

(̂ 7 Θ f)Φ)
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by Lemma 3.3. Let h(s) =" ̂ ((0, s)), h(0) = 0. By Lemma 3.4, Jx is
the R.S. integral

After integrating by parts,

For J2, define

**(ff) = ( g(t)f{t)dη(t) ,

Then x* is a bounded linear functional on L^ and, therefore, there is
a | G 6α{Z, ̂ f9 m] such that

(3.3.1) x*(g)=\g(t)df(t), geL^

and J2 = #*(&). By Lemma 3.4 and making use of the absolute conti-
nuity of δ, we may integrate x*(b) as expressed in (3.3.1) by parts
to get

j 2 = b(t)ψ((0, t))]l

= δ(l)f ((0,1)) - JpK(O, ί))δ'(ί)dί = j ^ ( ( ί , l))b'(t)dt.

Since

and «*(&(*,!,) = ψ((ί, 1)) from (3.3.1), then

J2 = a;*(6) =

Therefore,

for arbitrary δ e AC0. This proves the lemma.
The multiplication in AC0** can now be put into concrete form.

THEOREM 3.6. If ξ,ηe AC$*, the corresponding set function
ζ Θ V e ba{I, JSf, m} is given by
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(3.6.1) (ξ Θ V)(E) = \{kE(t)V((O, t)) + η(E n (t, l))]dξ(t)

for each

Proof. Write (ζ 0 η)(E) = (ξ 0 η)(kE) = ξ(η 0 kE) and apply
Lemma 3.5.

4* Idempotents* With the aid of Theorem 3.6 we can identify
a large family of idempotents in AC** and discuss their multiplication.
In this section we will find a special family of idempotents useful for
spectral theory.

Let Φ be the family of nonzero multiplicative linear functional
on Loo. Each φ e Φ, when viewed as a member of δα{/, jSff m}, is a
set function on <& which assumes only the values 0 and 1. Let &
denote the family of Lebesgue null sets contained in £&. There is a
one-to-one correspondence between members of Φ and ultrafilters
contained in Sf ~ & given by

The next lemma is probably well known. A short proof is given for
completeness.

LEMMA 4.1. There is a continuous map h from Φ with the
weak*-topology onto I such that for each f continuous on J, <p(f) —
f(h(φ)),φeΦ.

Proof. For each φe Φ define h(φ) to be the point tel to which
the ultrafilter Uφ converges. That is to say, {t} = f)[E :Ee £f, φ{E) = 1],
where E is the closure of E in /. This map is onto /, since, given
tel, the filter base consisting of open neighborhoods of t in I is
contained in £f ~ έ% and by Zorn's lemma is contained in an ultra-
filter in ^ ~ &'. If ψ is the set function corresponding to this
ultrafilter, then h(φ) — t. To show h is continuous, let F be a closed
neighborhood of t in I and let φt e Φ where h(<pt) = t. By the definition
of h it is obvious that the weak*-neighborhood of φt given by
[φ e Φ : I φ(F) — φt{F) I < 1] is mapped into F under h. To conclude
the proof, let / be continuous on I and let h(φ) — t. Then

I φ{f) - f(t) I g JJ/(S) ~ f{t) I dφis) = j^|/(β) - fit) I dφis)

where V is an arbitrarily small neighborhood of t in /.

DEFINITION 4.2. Let Ft = [φeΦ h(φ) = t],tel denote the fiber
at t.
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JiφeFt, we will write φ — φt. Each member of Ft assumes
the value 1 on each open neighborhood of t in I. If E e Sf and t $ E,
then φt(E) = 0 for each <pt e Ft.

In the next lemma we consider multiplication between members

of fibers. We will adopt the convention that <po((O, 0)) = ^ ( ( 1 , 1)) = 0.

LEMMA 4.3. // 0 ^ s ^ t ^ 1, EejSf, and φ8, <pt are members of
F8, Fu respectively, then

3 D (?>• Θ ^ ) ^ ) (Ps(E)φs((t1 1)) + φt(E)φ.((0, t))

(<PtQ Ψs){E) = φt(E)φt((s, 1)) + φ.(E)φt({0, 8» .

Proof. First suppose that 0 < s ^ ί < 1. By Theorem 3.6,

n (M

By the multiplicative property of φt, this is equal to

( <Pt((0, U))dφs{u) + φt{E)\ φt((u, l))dφB(u) .
JE JI

Since φt((0, u)) — k{tΛ)(u) and φt((u, 1)) = k{0,t)(u) except at some
endpoints, which can be ignored,

(φ. 0 φt){E) - ί dφs(u) + ^ ( ^ ) ί dφs(u)
JEfϊ(tfl) J ( 0 , ί )

and the first formula of (4.3.1) is apparent by the multiplicative
property of φs. The other cases and the second formula are verified
in a similar manner.

THEOREM 4.4. ( i) Each φeΦ is an idempotent.
(ii) // 0 ^ s < t :g 1 and φs, φt are "members of FS9 Fu then

(4.4.1) φs 0 φt = cpt 0 φs = φt .

Proof. ( i ) If φeΦ,φ = φs for some sel. By (4.3.1),
(9>. Θ φs)(E) = φs(E) for each Ee^f.

(ii) Since s < ί, φ,((t, 1)) = 0 and φ8((0, t)) = 1. Formula (4.3.1)
implies that (cpβ 0 φt)(E) = ^(J&) for Ee^f. Similarly, as ^((s , 1)) = 1
and ^((0, s)) = 0, we have (<pt 0 φs){E) = φt(E).

A finer classification of members of Φ will be needed. If φse FS1

it must assume the value 1 on exactly one of the intervals (0, s) or
(β, 1), if 0 < s < 1. We shall write φs = ^ s

+ if ^ s((s, 1)) = 1 and
φs — φ~ if 9?8((0, s)) — 1. At the end points of / = [0, 1], we must
put φ1 — φϊ and φ0 = φt\ φt and φo are not defined.
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This classification splits each interior fiber into a positive and
negative part, Fs = Fs

+ U F~, 0 < s < 1. The next theorem gives the
Arens multiplication between elements of the same fiber. The non-
commutativity of the multiplication is evident in ( i ) or (iii).

THEOREM 4.5. Let <pΐ, ft e Ft and φi, ψ^ e Ft~ for t as indicated
below. Then

( i ) φΐQirϊ = φΐifO£t<l,
(ii) φtQψ7 = ψ7Q<PΪ = φΐ if 0<t<l,
(iii) φj © fT = Ψ7 if 0 < t ^ 1.

Proof. The proof is an immediate consequence of (4.3.1).

The multiplication between members of Φ may be summarized as
follows: if t < s in J, let Ft preceed Fs. In a given fiber Fu, let
F~ preceed F? when defined. If φ and ψ are any two members of
Φ which do not both lie in a positive or negative part of a fiber,
their product is commutative and is equal to the one in the fiber ahead
in this ordering.

The remainder of this section is concerned with Theorem 4.6. Let
Lt be the real space of equivalence classes of essentially-bounded and
real-valued J^-measurable functions on I with essential supremum norm
Noo( ). Let M^Mπ) denote the space of all real-valued (complex-valued),
bounded and .Sf-measurable functions on I with supremum norm.

THEOREM 4.6. There exists a function U: I —» Φ such that
(a) U(t) 6 Ft

+ if 0 ^ t < 1,
(b) U(t)(f) = f(t) except on a Lebesgue null set depending on f,

for each feL^y

(c) sup {| U(t)(f) |: t e [0,1)} - JNL(/), fe L»,
(d) Z7( ): I/*,—>MOO is an algebraic isomorphism,
(e) If f is continuous from the right in [0,1), then U(t)(f) = f(t).

Proof. Let feM£ and let

p(f)(t) = ϊίϊn n[+llnf(s)ds , t 6 [0, 1) ,

(4.6.D ^
\ f(s)ds.

l—lln

Then p(f + g)(t) ̂  p(f)(t) + p(g)(t) if f,ge MS, t e I, and if a ^ 0,
p(af)(t) — ap(f)(t). By the Hahn-Banach theorem, for tel, there is
a linear functional G( )(ί) on MS to the real numbers such that
G(/)(ί) ^ P(/)(*). Since - p ( - / ) ( ί ) ^ G(/)(ί),
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f(s)ds g G(f)(t) ^ lim n\ f(s)ds , t e [0,1)
t n Jt

and a similar formula holds for G(/)(l). By Lebesgue's differentiation
theorem, G(f)(t) = f(t) for almost all £ e I and by completeness of
£f, G maps Mi into itself. The properties of G include: (i) G(f) = /
a.e. on I, (ii) G(l) = 1, (in) / = 0 a.e. implies G(f) = 0, (iv) / ^ 0
implies G(f) ^ 0, (v) G is linear. If G were also multiplicative the
proof could be concluded. A. and C. Ionescu Tulcea have given an
elegant proof that a closely related mapping is multiplicative in [8,
Prop. 4]. Following their proof, let θ', θ" be set mappings of £f into

given by

(4.6.3) Θ\E) - [ί : G(ka)(t) = 1], Θ"(E) = [ί : G(ka)(t) Φ 0] .

They show that the convex set consisting of all mappings Gf of MS
into itself which satisfy properties (i) through (v) and which also satisfy

(4.6.4) kθ,ιa) ^ G\ka) ^ kθma) , Ee£f,

has an extreme point H and that H is multiplicative on MS. Since
H is defined on L£ by (iii), the map/ —> H(f)(t), t e I, is a multiplicative
linear functional on L£. If we set U(t)(f) = H{f^(t) + iH(f2)(t) for
f — f + if2 in the complex space !/«,, where /i, /2 are real, then Z7(ί)
is multiplicative on LM. Formula (4.6.4) holds for U because it is true
for H. By (4.6.2) through (4.6.4), U(t) must assume the value 1 on
kitfl) if 16 [0,1). Hence, U(t) e Ft

+ as asserted. Part (c) is easy to
verify. For part (e), suppose te[0,1) and that / has a limit from
the right at t. Then

I U(t)(f) - /(* + 0) I =

for each ε > 0. Hence, U(t)(f) = f(t + 0).
The following corollary will be needed in the last section.

COROLLARY 4.7. If fe Lw and U(t + 0)(/) exists for t e [0,1),
then U(t + 0)(/) =

Proo/. Let g(s) = U(s)(f), se [0, 1). As in the proof of part (e)
above, U(t)(g) = #(£ + 0). Since / = # almost everywhere, U(s)(f) =
Ϊ7(s)(flf) for all s e [0,1). In particular, g(t) = flf(t + 0).

5* Functions of bounded variation* Let BV0 denote the algebra
of complex-valued functions of bounded variation defined on I = [0,1],
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which are zero at 0, with the usual operations for functions. In this
section a quotient algebra of AC$* will be identified with BV0.

Let A be a commutative Banach algebra. Let Y be the closed
linear manifold in A* which is generated by the multiplicative linear
functionals μ on A. Let

Y1 = [ζeA** :ξ(μ) = 0] .

Civin and Yood [3] have shown that (i) YL is a closed two-sided ideal
in A**, (ii) A**/Y1 is a commutative and semi-simple Banach algebra
and (iii) μ, the canonical image of μ in A***, is a multiplicative linear
functional on A** whenever μ is multiplicative on A.

We recall (Lemma 3.2) that the nonzero multiplicative linear
functionals on AC0 are given by point evaluations μt(a) = a(t), t e (0, 1],
ae AC0. Let Y, as above, denote the closed subspace of ACt generated
by the μt's. First we identify Y. Let Σ denote the algebra of all
finite unions of intervals of the form [s, t) for 0 5Ξ s < t ^ 1. Let
B — .B{[0, 1), Σ} denote the Banach space of all uniform limits of complex
linear combinations of characteristic functions of sets from Σ with the
norm || /\\B = sup {| f(t) | : ί e [0, 1)}, fe B. Let Γ*, denote the closed
linear manifold in L^ which corresponds to Y in ACQ under the
isometric isomorphism between AC^ and L^ mentioned in Section 3.

LEMMA 5.1. The spaces Y^ and B are isometrically isomorphic
under the map U( ) of Theorem 4.6.

Proof. B y (3 .2 .1) , if te[Q, 1), t h e n

μt(a) — \ kϊ0,t)(u)a'(u)du , ae AC0 .

Thus, point evaluations in ACQ correspond to equivalence classes in
Loo which contain characteristic functions of the form fcL0,t) Hence,
Yoo is the closed linear manifold in L^ generated by such equivalence
classes. Since kίQtt) is continuous from the right, its equivalence class
is mapped into kίOtt) e M^ under Ϊ7( ) Hence, U( -) carries Y^ onto
B and is clearly an isometric isomorphism.

Let ha denote the complex space δα{[0,1), Σ} consisting of all
finitely additive, complex-valued set functions y defined on Σ for which
Varv(7, [0, 1)) is finite. It is well known that ba is isometrically
isomorphic with B* under the correspondence

(5.1.1) » * ( / ) = [ f(s)dy(s) , x*eB*,yeha,
J [0,1)

where the norm of x* is equal to the total variation of 7. A nice
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discussion of this integral may be found in [7; 4, p. 258], Since Y
(which we identify with Y^) and B are isometrically isomorphic and
y* and ACQ^/Y1- are isometrically isomorphic by general principles,
we conclude that ACfjY1' and ba are isometrically isomorphic.

THEOREM 5,2. With the usual point-wise multiplication, BV0

is a Banach algebra under the norm Var7 ( ) and is isometrically
algebraically isomorphic with the quotient algebra AC$*/Yλ.

Proof. If geBVQ and we define yg([8, t)) = g(t) - g(s) for 0 ^
s < t ^ 1, we obtain a member of ba. It is obvious that Varx (g) —
Vari:(yg, [0, 1)). Conversely, f o r τ € δ α we may define gy(t) — τ([0, ί))
for 0 < t g 1, ί/γ(0) = 0, to obtain a member of BVQ. It follows that
B Vo, ba and the quotient algebra are isometrically isomorphic as Banach
spaces. It remains to show that the multiplication induced in J5F0

from the quotient algebra is the usual pointwise multiplication of
functions. It is apparent from the Hahn-Banach theorem and the
various isometric isomorphisms mentioned above that set functions in
ba arise precisely from set functions in ba by restriction to the
subalgebra Σ c_Sf. Thus, a general member of BV0 may be viewed as

Λ(*) = f([0, «)), Λ(0) = 0 , ζeACr .

Let ηeAC$*. By remark (iii) in the second paragraph of this section,
(ζ 0 y]){μt) — HfttiyiPt) f° r point evaluations μt on ACQ. On the other
hand,

(5.2.1) ξ(μt) - \kίM{u)dζ{u) - f([0, t))

and similarly, η(μt) - η([0, t)). Thus, if g^jt) = (ξ 0 )?)([0, ί)) corre-
sponds to ξ Qη, considered as a member of δα, then gζ®v(t) = gζ(t)gv(t).

The noncommutativity of AC?* was shown in Theorem 4.5. Another
proof of this fact and a proof that AC** is not semi-simple has been
given by Gulick [6] based upon methods of Civin and Yood.

6* Extension of a homomorphisnu Let A be a Banach algebra
and suppose p0 is a bounded homomorphism of A into B(X), the algebra
of bounded linear operators on a Banach space X. Under the natural
embedding α—>α we may consider A as a subalgebra of A** with
Arens multiplication. In this section we consider the problem of
extending pQ to the larger algebra. We recall that a net {Ta} converges
to T in the weak operator topology in B(X) if and only if x*Tax—*
x*Tx for each x* e X* and each x e X.
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THEOREM 6.1. // X is reflexive, p0 has an extension to a
homomorphism p of A** B(X) such that

φ ιifl>ιι = ιi/>ιι,
(ii) p is continuous from A** with the weak*-topology into B(X)

with the weak operator topology.
Moreover, p is unique among all extensions of p0 having property (ii).

Proof. Define the bilinear mapz/:X* x X—»A* by (x*Δx)(a) =
x*po(a)x for ae A, x* e X*, xe X. Then Δ is bounded by || |O0 | | and
the bilinear adjoint J* is given by {ζΔ*x*){x) = ξ{x*Δx), ζ e A** (Section 2).
For fixed ζeA**, this gives a linear map p^ζ): x* —> ζΔ*x* of X
i n t o X * a n d | pί(ξ)x*x | = | ( ξ 4 * x * ) x | - | ξ{x*Δx) \S\\ζ\\\\ po IIII ^* IIII x

*

Therefore, Hftίί) || ^ || £ || H^ll and p^ξ) is in B(X*). Since X is
reflexive, the operator adjoint ρ(ξ) of p^ζ) carries X into X, is an
operator in B(X), and satisfies

(6.1.1) &V(£)α = ξ{x*Δx)

for all x e X and x* e X*. It is also obvious that || ρ(ζ) || ^ || £ || || #> ||.
Thus, p clearly satisfies (i) and is a linear extension of p0 to A**.
Because x*ΔxeA*, it is obvious from Formula (6.1.1) that p satisfies
(ii). It remains to show that p is multiplicative and is unique subject
to condition (ii). Since each <JeA** is the weak*-limit of a net {da}
from A, an obvious computation establishes that Formula (6.1.1) may
be expressed as

(6.1.2) x*p(ξ)x — limα x*pQ(aa)x , £ = weak*-lim« da ,

for all xeX and £ * e X * . If p' is any mapping of A** into B(X)
which extends p0 and which satisfies (ii), it is easily seen, with the
aid of Formula (6.1.2) that p — pf. Now let £ = weak*-limα da and let
η = weak*-limβ6β where aa and bβ are in A. Then daQ>r] —
weak*-limβαα 0 bβ (see Section 2). By Formula (6.1.2), x*p(da 0 η)x =
limβ x*p(da 0 bβ)x — limβ x*pQ(aabβ)x — limβ x*Po(aa)pQ(bβ)x — x*po(aa)ρ(η)x.
Since £ 0 η = weak*-limα αα 0 97, using Formula (6.1.2) again, we get
®*P(£ 0 ^ ) ^ = 1™* %*po(a<a)p(y)% — x*p{ξ)p{rj)x. Since this holds for
each x and a?*, ̂ (f 0 rj) — p(ζ)p(η).

With minor modifications the proof of Theorem 6.1 establishes the
following variant on that theorem

THEOREM 6.2. If A is a commutative Banach algebra and p0 is
a bounded homomorphism of A into B(Y*) for some Banach space
Y, then p0 has an extension to a homomorphism p of A** into B(Y*)
such that

( i ) I I ^ I I = u p II,
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(ii) If ξ = weak*-limα aa, ζ e A**, aa e A, then ρ{ζ)y*y =
limα ρQ{aa)y*y for all yeY and y* e Y*.
Moreover, p is unique among all extensions of p0 having property (ii).

We shall only be interested in the reflexive situation as in Theorem
6.1. Let M denote the closed linear manifold in A* generated by linear
functionals of the form x*Δx, x* e X*, x e X. It is evident from Formula
(6.1.1) that the kernel of p is M1. Formula (6.1.2) implies that the
range of the extension p is contained in the closure of the range of
pQ in the weak operator topology. Thus, if A is commutative, the
range of p is a commutative algebra of operators in B(X).

The question arises whether Theorem 6.1 can be applied to p in
order to obtain a further extension to A****. There are no further
nontrivial extensions by the method of Theorem 6.1.

7* Well-bounded operators* Let Xbe a reflexive Banach space.
Let T be the well-bounded operator mentioned in Section 1 with an
operational calculus a—+a(T) where aeAC(I) and

(7.0.1) || a(T) || <; κ{\ α(0) | + Var (α)} , I = [0,1] .

This operational calculus is uniquely determined by its values on complex
polynomials as these are dense in AC(I) with the norm (1.0.1) (cf.
[14, Lemma 2.1]).

Let ô be the homomorphism po(a) — a(T) induced on AC0 by the
operational calculus. As in Theorem 6.1, pQ has a unique extension
to a bounded homomorphism p of AC$* into B(X) such that x*p(ζ)x =
ξ{x*Ax) for xeX, £* e X* and ξeAC$. The existence of p and the
map t —> U(t) of Theorem 4.6 lead to the spectral theorem for Γ. The
space Y and B mentioned below are defined in Section 5.

THEOREM 7.1. (i) J / a ; e I , ^ e P , then x*Δxe Y.
(ii) For each x e X, the vector valued function £ —> p( U(t))x is

continuous from the right in [0,1).

Proof. By Theorem 4.4, if 0 ^ s ^ ί < l , U(s)QU(t) = U(t)QU(s) =
U(t). Hence, {p(U(t))} for έe[0,1) is a bounded and nonincreasing
family of projections in B(X). Since X is reflexive a theorem of
Lorch [11, Theorem 3.2] states that the function t—*p(U(t))x has a
limit from the right at each point of [0,1) and has a limit from the
left at each point of (0,1]. If x* e X*, the function t ~* x*ρ(U(t))x =
U(t)(x*Jx) has the same limit properties. By Corollary 4.7 this function
is continuous from the right in [0,1). The space B can be characterized
as the space of all bounded complex-valued functions defined and
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continuous from the right in [0, 1) and which have limits from the
left at points of (0, 1] (see [7], Theorem 4.5]). Therefore, U{ ){x*Δx)
is in B. By Lemma 5.1, x*Δx is in Y (we identify Y^ with Y).
This proves (i). To prove (ii), let s be fixed in [0,1). By Lorch's
theorem, there is a ze X such that z — limt_>s+0 p(U(t))x. Since x*z =
lim^+o x*p(U(t))x — x*p(U(s))x for each x* e X*, then z — (U(s))x.

COROLLARY 7.2. The kernel of p contains Y1.

Proof. Since Λf, the closed linear manifold in AC0* generated by
the functionals x*Δx is contained in Y, the kernel of p, M1, contains Y1.

DEFINITION 7.3. For each t e [0,1) choose a member V(t) from
the positive side of the fiber Ft

+ (Sec. 4) and let

(0 if - oo < t < 0

Et= \l-p(V(t)) if 0 ^ ί < l

[I if 1 ^ t < oo

where 0 and I are the zero and identity operators in B(X).

THEOREM 7.4. The family of projections {Et} does not depend
upon the choice {V(t)} (when X is reflexive) and satisfies

(i) H^H^iΓ+1,
( i i ) E8Et — Emin{8tt),

(iii) l i m ^ s + 0 Etx — Esx for each xe X,

(iv) Et = 0ift<0,Et = I i f t ^ l .

Proof. Let t e fO, 1) be fixed. By the definition of Ft

+ any two
members, say V(t) and U(t) agree as set functions on intervals of
the form [0, s) for 0 < s ^ l . Hence, as functionals on AC0*, V(t)(μs) =
U(t)(μs) for each point evaluation μs on AC0 (see Formula (5.2.1). By
linearity and continuity, V(t) and U(t) agree on Y. Since X is
reflexive, p(V(t)) = p(U(t)) by Corollary 7.2. The second statement is
clear by Definition 7.3 and Theorem 4.4. The third was shown in
Theorem 7.1 (ii).

At this stage it is an easy matter to obtain spectral integrals for
a T satisfying (7.0.1). Let a = (a - α(0)e) + α(0)e be in AC(I) =
AC, 0 {Xe}. Let x* e X* and xeX. Then

x*a(T)x = #*xα(0) + x*po(a — a(ϋ)e)x

(a - a(0)e)

{x*Ax)(s)a'{s)ds
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by Formula (3.2.1). By Theorem 4.6 we may replace {x*Ax){s) by
U(s)(x*Ax) and by Definition 7.3 we have

(7.4.1) x*a(T)x = x*xa(0) + ί x*(I - Es)xa'(s)ds .

This Lebesgue integral is a Riemann-Stielt jes integral by the absolute
continuity of a and because the integrand, a member of £>, has at
most a countable set of discontinuities. Also, by a slight generalization
of a theorem of Graves ([5, Theorem 1]) it can be shown that the
Riemann-Stieltjes integral

ί (I - Es)xda(s)

exists in X whenever a is continuous and of bounded variation on the
closed and bounded interval J. (A variant of the proof given in [5]
is valid for such an a because the vector valued function t —> Etx has
at most a countable set of discontinuities by right continuity ([14, p.
330])). We may suppose that a is absolutely continuous on [ —ε, 1],
ε > 0. By these remarks, we may remove the x* from (7.4.1), integrate
by parts on [ — ε, 1] and let ε—>0 to obtain the strong integral

(7.4.2) a(T)x = Γ a(s)dEsx , ae AC(I), xeX .
J o -

If the unit function e is adjoined to BV0 we obtain BV(I) =
£ F O 0 {λe}, the Banach algebra of complex-valued functions of bounded
variation on I with the norm \g(0)\ + Varz (g), ge BV(I). As in the
proof of Theorem 5.2, members of BV0 arise from set functions
ξ e AC** by the correspondence gζ{t) = f([0, t)) for 0 < t ^ 1, gζ(0) - 0.
The notion of integration of functions in B with respect to set functions
in ba as in (5.1.1) is essentially the same as that given in the paragraph
after Formula (3.2.1). The only difference is that Σ replaces Sf and
the sup norm on [0, 1) replaces NJ^ ). With this in mind it is easy
to see that

f(t)dgt(t) = \ f(t)dξ(t)
[0,1) Jl

whenever feB. Thus, proceeding as in the derivation of (7.4.1), one
obtains the operational calculus gξ—+gξ(T) of BV0 into B(X) in the
weak form

x*ρ(ξ)x = \ x*(I - Et)xdgζ{t) = x*gξ(T)x .
J LCD

This calculus may be extended to JBV0©{λβ} in the obvious way.
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In conclusion, the role of the negative sides of the fibers will be
clarified. Let t e (0, 1] be fixed. For each s e [0, t) choose a member
φt e F+. Let φi e Ft~ be choosen. Let 0 < r g 1. It is easy to verify
that lims^_oφt(μr) = \ims^oφt([Q, r)) = φ7([0, r)) = Φ7(μr) for point
evaluations μr. The limit also holds on finite linear combinations of
the μr and, hence, it holds on Y. Therefore, x*p(φj)x ~ φj{x*Δx) —
lim^^o φi(x*Δx) = lims_>ί_0 %*(I — Es)x = x*(I — Et_0)x for each xe X
and x* e X*. Hence, ρ(φr) = I — £?t_0.
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