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Let « be a homotopy class of maps of X, a connected com-
pact metric ANR, into itself and let L. denote the Lefschetz
number of a«. A converse to the Lefschetz fixed point theorem
is: if L, =0 then « contains a fixed peoint free map. The
converse is true if X is a compact connected simply-connected
topological n-manifold (Fadell) or if X is a compact connected
topological n-manifold, with or without boundary, and a con-
tains the identity map (Brown-Fadell). Let x(a) denote the
fixed point class invariant of «, then every map in « has at
least #(«) fixed points, The purpose of this paper is to gener-
alize the preceding results by proving that if X is a compact
connected topological n-manifold, 7 = 3, with or without
boundary, then there is a map in « which has exactly u(«)
fixed points. It follows that the comverse to the Lefschetz
theorem will hold whenever « contains a map all of whose
fixed points are in a single fixed point class,

Let X be a topological space and let f* X— X be a map. If
z, 2’ € X are fixed points of f, then x and &’ are in the same fized
potnt class [7], [9] of f if there is a path w:I— X (I={0,1])
homotopic to the path fw by a homotopy keeping « and z’ fixed, i.e.,
there exists a map H:I x I— X such that H(s, 0) = w(s), H(s,1) =
S(w(s)), for all sel, and H(0,t) = x, HQ1,t) = &', for all tel.

In order to state our theorem, we will need the results of Browder’s
extensive research on fixed point classes and the fixed point index [1},
[2]. For the reader’s convenience, we will summarize those results
which we require. Let X be a connected compact metric ANR. Let
f: X— X be a map and let « denote the homotopy class of maps
containing f. The fixed points of f belong to a finite number of fixed
point classes %, -+, %,.. There is a set of mutually disjoint open sets
®,+++, 8, of X such that §,C®;,7=1,---, 7. The fixed point index
i(f, ®;) of f on ®; is well-defined and independent of the choice of &,.
Call this integer the index of the fixed point class &, and denote it
by (E;). Let p(f) denote the number of fixed point classes F; of f
such that #(%;) = 0. If gea, then u(g) = p(f) so we may replace
(f) by pla). Every map in « has at least p(a) fixed points.

THEOREM 1. Let M be a compact connected topological n-mantfold,
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n = 3, with or without boundary, and let o be a homotopy class of
maps of M into itself. There ts a map fea which has exactly
mla) fized poinmts,

In the case of triangulated manifolds, Theorem 1 is a consequence
of Theorem 3 of [9]. (See [13] for the announcement of a different
extension of Wecken’s theorem to topological manifolds.) The restric-
tion on the dimension of the manifold in Theorem 1 is necessary; a
two-dimensional counter-example is known [14].

If all the fixed points of a map ge a are in the same fixed point
class §, then we can take & = M and «(§) = i(g, M) = L,= L, [2,
Theorem 4]. Therefore, we have the following homotopy converse to
the Lefschetz fixed point theorem.

COROLLARY. Let M be a compact connected topological n-manifold,
n = 3, with or without boundary, and let a be a homotopy class of
maps on M which contains a map all of whose fixed points lie in a
single fixed point class. If L, =0, then «a contains a fized point
free map.

It is clear that for manifolds of dimension at least three, the
converses to the Lefschetz theorem obtained by Fadell [5] and by
Brown and Fadell [4] stated above are immediate consequences of the
corollary.

Although the Lefschetz fixed point theorem itself holds for very
general categories of spaces [2], [6], the converse fails to be true
even for finite polyhedra, e.g., for the class of the identity map on
S*v Stv St (Y. H. Clifton).

2. Fixed points of maps on manifolds with boundary. The
results of this section are generalizations of theorems of Weier [12].
(A closely related development is given in [11].).

THEOREM 2. Let M be a compact connected topological mansfold
with boundary and let f: M — M be a map, then there extists a map
[ M — M homotopic to f such that f' has a finite number of fized
points; none of which lie on the boundary of M.

Proof. If we identify two copies of M by the identity homeo-
morphism restricted to the boundary B of M, we obtain a compact
connected manifold without boundary called the double of M and
denoted by 2M. Denote one of the copies of M in 2M by M, and
congider f to be a map on M, It follows immediately from [3,
Theorem 2] that there is a homeomorphism A of B x I into M, such
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that (b, 0) = be B. Define a family of maps +': M, — M, tel, by
letting ri(x) =« for all xe[M, — h(B x I)] and all tel and for
h(b,s) e h(B x I), let r*(h(b, s)) = h(b, (1 — s)t + s). The map f induces
F:2M — M, in the obvious way so that F(x) = f(x) for all xe M,.
Consider g = r'F': 2M — M,, then ¢ is homotopic to F, g| M, (g restricted
to M,) is homotopic to f, and g(M)) = [M, — h(B x [0,1))]. Let ¢>0
denote the distance from B to i(B X {1}). By Theorem 1 of [12], there
is a homotopy ¢': 2M — 2M, t € I, such that ¢’ = g, p(g'(®), g(x)) < e for
all tel and xe€2M (o is the metric of 2}) and g¢g' has at most a
finite number of fixed points. By the definition of ¢, it is clear that
f'=g¢'| M;: M, — M, is homotopic to f and f'(M,) & M, — B so f' has
no fixed points on B,

REMARK. Suppose «, ®’ € M are fixed points of f: M — M which
are in the same fixed point class of f by means of a path w, that is,
w is a path in M from x to ' which is homotopic to fw by a
homotopy which keeps « and «’ fixed. Let w’: I— M be a path from
2 to 2’ which is homotopic to w by a homotopy which keeps = and '
fixed, then « and 2’ are in the same class of f by means of w'.

THEOREM 3. Let M be a compact connected topological n-manifold,
n = 3, with boundary B and let g: M — M be a map with a finite
number of fixed points, none of which lie on B. If x, and x, are
JSized points of g im the same fixed point class, then there exists an
open set W< M, containing x, and %, but no other fixed point of g,
and a map g': M— M such that g’ ts homotopic to g, g'(x) = g(x) for
all xe M — W, and x, is the only fixed point of g’ in W.

Proof. We first show that x, and x, belong to the same fixed
point class of g by means of a path w'; I — M such that w'(I) N B =
@. By hypothesis, x, and x, are in the same class by means of a
path w”., By Theorem 2 of [3], there is a neighborhood U of B in
M and a homeomorphism % :B X [0,1) — U (onto) such that h(b, 0) =
be B. Since neither z, nor x, is in B, we can construct U so that it
does not contain these points, Define the path w’ by

w"(t) w'(t)y e U
’bl)’(t) = r+1 ”
h(b, ; )w(t):h(b,fr)eU (be B, re[0,1)) .
Define K:I X I— M by
w"(t) w"(t)e U,

K(t, s) = {h(b [1 S ’"]s + ¢> w'(t) = b, 1) e U,
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then K is a homotopy connecting w” and w’ keeping x, and 2, fixed,
so by the remark, w’ is the required path, Now suppose that for
some fixed point x, of ¢ we have w'%x,) =J % @. Let N be a
Euclidean neighborhood of x, containing no other fixed point of g and
let a: N— R™ be a homeomorphism taking @, to the origin. Let A be
the closed unit ball in R" centered at the origin and let V = a~'(4).
Let {C,} denote the components of w'~'(V)cC I, then by the continuity
of w’, there are only a finite number of such components {C;}™, with
the property C;NJ #@. Note that C; = fe;, d;]<(0,1) for ¢ =1,--+,m
and let {, :[c, d;]— N — V such that {,(c,) = w'(c,), {.(d,) = w'(d,), then
the path w] defined by

w’(t) tel — (01, dl)

YO= 0w tele, d]

is homotopic to w’ by a homotopy which is constant outside of N and
80, in particular, keeps z, and x, fixed, Thus, by the remark, z, and
2z, are in the same fixed point class of g by means of w]. Repeating
this construction a finite number of times, we obtain a path w: I—M
such that x, and x, are in the same fixed point class of ¢ by means
of w, w(I)NB =, and w intersects no other fixed point of g. Hence
there exists an open set W in M — B containing w and disjoint from
all fixed points of g except z, and z,., We can now apply the proof of
Theorem 5 of [12] to g, W, z, the z, without any changes whatsoever
to obtain the required map ¢’: M — M.

3. Proof of Theorem 1. By Theorem 2, there is a map f'ea
with a finite number of fixed points, none of which lie on the boundary
B of M, Applying Theorem 3 to f' a finite number of times, we
obtain a map ge a no two of whose fixed points are in the same fixed
point class of g. Denote the fixed points of ¢ by «,, -, z.(eM — B),
then there exist Euclidean neighborhoods Uy, - -+, U, such that ;¢ Uj,
i=1,-r, U,n0. =@ for j=k, and i(z;, U;) = 4(F,;) where §;
denotes a fixed point class of g. By a result quoted above (§ 1), i(%;) = 0
for exactly p(a) of the classes ;. Let z; be a fixed point of g such
that #(¥;) = 0. There is a homeomorphism h: U; — R™ (onto) taking
x; to the origin. Let A be the closed unit ball in R" centered at
the origin and let V= h~'(4). We may obtain a finite triangulation
of V of mesh small enough so that if P is the closed star of z; then
g(P)cV. A slight modification of the proof of Proposition 1.1 of [4]
permits us to identify O’Neill’s index on U; [8] with the index we
have been using in this paper. Therefore, the index of g on U; as
defined in [8] is zero and by Corollary 5.3 of that paper, there is a
map ¢: M— M such that ¢’ has no fixed point on U; and ¢’ is suf-
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ficiently close to g so that ¢'(P)< U,. Furthermore, from the proof
of Theorem 5.2 of [8], it follows that, for xe M — P, ¢'(x) = g(x).
Thus ¢’ c o and ¢’ has the same fixed points as ¢ except for «;. If
we repeat this construction for each fixed point z, of g such that
%% = 0, we obtain in a finite number of steps a map fea with
exactly p(a) fixed points,
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