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It is proved in the present paper that if A is a normal
Hubert space operator, and if the operator B leaves invariant
every invariant subspace of A, then B belongs to the weakly
closed algebra generated by A and the identity. This may
be regarded as a refinement of the von Neumann double
commutant theorem. A generalization is given in which the
single operator A is replaced by a commuting family of
normal operators. Also the same result is proved for the
case where A is an analytic Toeplitz operator.

The results to be obtained will now be described in greater detail.
Theorem 1 refines the following well-known result.

THEOREM 0. If A is a normal operator on a Hilbert space H,
and if the operator B on H commutes with every projection that
commutes with A, then B belongs to the weakly closed star-algebra
generated by A and the identity.

This is essentially the von Neumann double commutant theorem; see
[13, p. 64] for the separable case and [11, p. 173] for the nonseparable
case, both in conjunction with [3, p. 43, Lemma 6].

To say that an operator B commutes with every projection that
commutes with the operator A amounts to saying that B is reduced
by every subspace that reduces A. The following theorem thus has a
stronger hypothesis than Theorem 0 and draws a stronger conclusion.

THEOREM 1. If A is a normal operator on a Hilbert space H,
and if the operator B on H leaves invariant every invariant sub-
space of A, then B belongs to the weakly closed algebra generated
by A and the identity.

Theorem 1 can be obtained very easily from Theorem 0. A proof
is presented in § 2. As an immediate consequence of Theorem 1 we
have the

COROLLARY. If A is a normal Hilbert space operator, then the
weakly closed algebra generated by A is a star-algebra if and only
if every invariant subspace of A is a reducing subspace.
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For the case where A is unitary this is closely related to a
theorem of R. W. Goodman [5]. We might mention that Wermer [14]
has given a simple example of a normal operator A which has no
nonreducing invariant subspaces but is such that A* is not the weak
limit of any sequence of polynomials in A.

Theorems 0 and 1 can both be regarded as special cases of a more
general result.

THEOREM 2. / / j y is a commutative, identity containing,
weakly closed algebra of normal operators on a Hilbert space H,
and if the operator B on H leaves invariant every invariant sub-
space of S^f, then B belongs to

If s%? is a star-algebra this is again essentially the von Neumann
double commutant theorem, a well-known result. The theorem for
the case where A is not a star-algebra can be obtained from the
case where it is by the same reasoning that yields Theorem 1 from
Theorem 0. A proof is briefly indicated in § 2.

Theorem 1 is not true in general for nonnormal operators; one
can give a trivial counter-example involving two-by-two matrices.
However there is a class of nonnormal operators for which Theorem 1
does hold, namely the analytic Toeplitz operators (to be defined later).

THEOREM 3. If A and B are analytic Toeplitz operators, and
if B leaves invariant every invariant subspace of A, then B belongs
to the weakly closed algebra generated by A and the identity.

The analytic Toeplitz operators form an algebra; in fact they form
the weakly closed algebra generated by the so-called unilateral shift
operator and the identity. The special properties of the shift will
enable us to prove Theorem 3 in the same way as Theorem 1. This
is done in § 3.

One question that suggests itself is: which operators besides the
shift generate the algebra of analytic Toeplitz operators? In view of
Theorem 3, an equivalent question is: which analytic Toeplitz operators
have precisely the same invariant subspaces as the shift? This problem
is investigated in detail in the following paper. In § 4 of the present
paper a few immediate conclusions are obtained.

2* Proof of Theorem !• The reader is assumed familiar with
the basic theory of normal operators, and we shall employ elementary
results from this theory without further explanation. In terminology
we follow Halmos's book [6], First some notations are needed. Sup-
pose that A is a normal operator on a Hilbert space H, and let E be
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the spectral measure of A. (We regard E as defined on the Borel
subsets of the complex plane.) For x in H we let Ex denote the
Borel measure on the plane defined by EJβ) — (E(S)x, x). For m a
natural number we let Hm denote the direct sum of H with itself m
times, Am the direct sum of A with itself m times (regarded as an
operator on £Γm), and Em the direct sum of E with itself m times (so
Em is the spectral measure of Am).

The following lemma is the essential step in the proof of Theorem 1.

LEMMA 1. With the above notations, let B he an operator on
H which leaves invariant every invariant subspace of A. Then Bm

leaves invariant every invariant subspace of Am, m = l , 2 , 3 , •••.

Proof. It will be enough to show that every cyclic invariant
subspace of Am is invariant under Bm. To this end, let a; be a vector
in Hm and let M be the smallest reducing subspace of Am containing
x. The measure (Em)x is absolutely continuous with respect to E, and so
there is a vector y in H such that Ey — {Em)x. Let N be the smallest
reducing subspace of A containing y. Since (Em)x — Ey, the operators
Am I M and A \ N are unitarily equivalent. Hence there is an isometry V
of N onto M such that Am \ M = VA V~\ It follows that if q is any complex
polynomial in two variables, then q(Am, A*) | M= Vq(A, A*)V~\ But
by Theorem 0, there is a net {q^ of such polynomials with q^A, A*) —> B
weakly. Therefore also g*(Am, AJ) —> Bm weakly. It follows that
Bm\M— VBV~ι. Hence V maps invariant subspaces of B onto in-
variant subspaces of Bm. Let L be the smallest invariant subspace
of Am containing x. Then V~ιL is invariant under A, and therefore
also under B. Hence L is invariant under Bm, and the proof of the
lemma is complete.

Proof of Theorem 1. Let A and B satisfy the hypotheses of
Theorem 1. Let xu , xm, yu , ym be unit vectors in H, let ε be
a positive number, and define 5^ to be the set of all operators T on
H satisfying

I (Txj9 y3) - (Bxh yό) | < ε , j = 1, . . . , m .

Then y is a weak neighborhood of B, and the family of all such
sets <%'" is a base of weak neighborhoods of B. Hence it will suffice
to show that 5^ contains a polynomial in A. To do this we form the
vector x — ̂ 0 ®xm in Hm. By Lemma 1, Bmx belongs to the in-
variant subspace of Aw generated by χB Hence there is a polynomial p
such that \\p(Am)x — Bmx || < ε. This implies that \\p(A)xό — Bxό || < ε
for j — 1, , m, and therefore
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I (p(A)xj, V i ) - (Bxif yd) I ^ \\p(A)x, - Bx0 || || ys | | < e , i - 1 , . . . , m .

Thus p(A) belongs to 5 ,̂ and the proof is complete.
We now sketch the proof of Theorem 2. Suppose J ^ and B

satisfy the hypotheses of that theorem, and let J^Ί be the weakly
closed star-algebra generated by J^f. Then j^f1 is commutative by
Fuglede's theorem [4]. Thus, by Theorem 2 for the case of star-
algebras, the operator B belongs to jy l β Moreover there is a spectral
measure E such that J ^ is the weakly closed star-algebra generated
by the spectral projections E(S) (see for example [10, p. 106]). It is
now possible to repeat verbatim the argument used to prove Theorem
1, but with the role of the operator A taken by the algebra

3* Analytic Toeplitz Operators* Let C be the unit circle in
the complex plane, regarded as a measure space with normalized
Lebesgue measure. The spaces L2(C) and L°°(C) will be denoted simply
by L2 and L°°. The functions en(z) — zn, n = 0, ± 1 , ±2, , form an
orthonormal basis for IΛ The bilateral shift is the operator W on
U defined by (Wf)(z) = zf(z)9 or equivalently by Wen = en+1. For each
φ in LΓ we define the operator φ( W) on L2 by φ{ W)f ~ φf, and we
denote by L°°(W) the algebra of all such operators. It is well-known
that L°°(W) is the weakly closed star-algebra generated by W.

The invariant subspaces of the operator W have been much studied;
see [1], [8], [7]. One obvious invariant subspace is the subspace spanned
by the basis vectors en with n ^ 0; we denote this subspace by H2.
If φ is in L°° and iΐ2 is invariant under φ{W), then φ obviously
belongs to the algebra H°° = H2 Π L°°. We denote by H~{W) the
algebra of operators φ{W) with φ in H°°. It is well-known that
H°°(W) is the weakly closed algebra generated by W and the identity
[9, p. 19], (The last conclusion can also be obtained by using Theorem
1 together with the known structure of the invariant subspaces of W.)

The unilateral shift is the operator U =W\ H2. For φ in H°°
we define φ{U) = φ(W)\ H2, and we denote by iϊoo(U) the algebra of
all such operators φ(U). The operators in H°°(U) are called analytic
Toeplitz operators. The assertion at the end of the preceding para-
graph implies that every operator in H°°(U) is a weak limit point
of polynomials in U. On the other hand, it is known that H°°(U)
consists precisely of the operators on H2 that commute with U [2,
Theorem 7], and consequently H°°(U) is weakly closed. Thus H°°(U)
is the weakly closed algebra generated by U and the identity. We
also note that if the operator B on H2 leaves invariant every invariant
subspace of U, then B must belong to H°°(U). This can be easily
proved by using the fact that each complex number a of modulus less
than unity is an eigenvalue of unit multiplicity of U*\ the corre-
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sponding eigenvectors are the functions ha defined by ha(z) — (1 — az)~\
If B leaves invariant every invariant subspace of U, then B* bears
the same relation to U* and therefore has each ha as an eigenvector.
Since the functions ha span H2 this implies that B* commutes with
U*, which means that B commutes with U and therefore belongs to

We can now get on with the proof of Theorem 3. For each
natural number m we let HI, denote the direct sum of H2 with itself
m times, and for A an operator on H2 we denote by Am the direct
sum of A with itself m times.

LEMMA 2. Let A and B be analytic Toeplίtz operators, and
suppose that every invariant subspace of A is invariant under B.
Then every invariant subspace of Am is invariant under Bm, m —
1,2,3,....

It is obvious that once this is proved, Theorem 3 will follow by
the same reasoning we used above to obtain Theorem 1 from Lemma 1.

Proof of Lemma 2. As in the proof of Lemma 1, it will be
enough to show that every cyclic invariant subspace of Am is invariant
under Bm. Suppose that x is a nonzero vector in H^, and let M be
the smallest invariant subspace of Um containing x. Then as Halmos
has shown [7, Theorem 2], the subspace M is generated by a unit
wandering vector of Um, that is to say, there is in M a unit vector
w such that (U£w, w) — 0 for n > 0 and such that the vectors U£w,
n Ξ> 0, span M. Hence we can define an isometry V of H2 onto M
by setting Ven = U^w, n = 0, 1, 2, . •, and we have Um\M= VUV-1.
Since A and B are weak limits of polynomials in U, it follows that
Am\M = VAV-1 and Bm\M=VBV~\ From this point the proof
proceeds exactly as that of Lemma 1.

4* Generators of H°°. The weak topologies on H°°(W) and
H°°(U) induce topologies on H°° by virtue of the isomorphisms
<p-+φ(W) and φ-+<p(U). The topology induced by H°°(U) is obvi-
ously coarser than that induced by H°°(W). It turns out that these two
topologies are in fact identical and coincide with the weak-star topology
of H°°. A proof of this can be found in [12, Proposition 11], We
shall call a function φ in H°° a generator if the polynomials in φ are
weak-star dense in iϊ°°. Theorems 1 and 2 together with the preceding
remark give the following result.

PROPOSITION 1. // φ is in H°° then the following are equivalent.
( i ) φ is a generator of H°°.
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(ii) φ(W) has the same invariant subspaces as W.
(iii) φ(U) has the same invariant subspaces as U.

To conclude this paper we obtain two simple necessary conditions
for a function to be a generator of H°°. The question of the generators
of H°° will be discussed in detail in the following paper. We call a
function φ on C univalent almost everywhere if there is a null subset
S of C such that φ is univalent on C — S.

PROPOSITION 2. If φ is a generator of iJ°° then φ is univalent
almost everywhere.

Proof. If φ is not univalent almost everywhere, then it follows
from multiplicity theory that φ(W) even has reducing subspaces that
are not invariant under W. For a more elementary proof we can
argue as follows. If φ is a generator of H°°, then eλ belongs to the
invariant subspace of φ(W) generated by e0. This implies that there
is a sequence of polynomials {pn} such that pn(φ(z)) —> z almost every-
where on C, from which it obviously follows that φ is univalent almost
everywhere.

Let D be the open unit disk, and for φ in H°° let <pD be the
Poisson integral of φ. Thus φD is a bounded analytic function in D
whose radial limits agree with φ almost everywhere on C.

PROPOSITION 3. If φ is a generator of H°° then φD is univalent.

Proof. If a is a point of D then the evaluation functional φ —> φD{a)
on H00 is weak-star continuous because it is induced by a function in
L1 (namely by the Poisson kernel for a). The proposition is now immediate.
A different proof can be based on the fact that for each a in D, the
function ha (defined in Section 3) is an eigenvector of φ(U)* with
eigenvalue φD{a). If φΏ assumes the same value at two distinct points
a and b of D, then the one dimensional subspace spanned by h- + h-ς
is invariant under φ(U)*, although this subspace is not invariant
under U*.
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