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Let f(2) be analytic in the region |z| < R (R £ + ). Then
in the interval 0 < r < R, Nevanlinna’s characteristic

Tr, )= 5| log | fre®) | 0
27 ),
is known to be nonnegative, nondecreasing and convex in
log 7; however, it is not known whether these properties
characterize completely T(r, /).

Recently, A. Edrei and W. H. J. Fuchs have investigated
one aspect of this question; they have shown that if A(r) is
an arbitrary convex function of log » defined for r, < r < + o
and such that log r = o(A(r)) as r — + oo, then it is possible
to find an entire function f(z) such that

(A) T(r, f) oo Alr) (r— + o),

except possibly for values of r belonging to an exceptional
set of finite measure. In this note 1 establish an analogue
of this result for the case of functions regular in a disk of
finite radius R,

The proof of (A) in the case R < + oo, as well as in the case
R = + oo, depends on the construction of certain infinite products
which have applications to other problems of the same nature. To
illustrate this fact, I use these products to find, very simply, examples
of functions F(z) which are bounded on |z| < 1 and such that the
derivatives F’(z) have unbounded characteristic.

The main result of this note is given by the following Theorem 1.
The notion of order which appears in the statement of the theorem
is the one introduced by R. Nevanlinna [9]: if A(r) is a positive non-
decreasing function defined in 0 < < R (< + =), the order A of
A(r) is

r—R—
s )
g <R r
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THEOREM 1. Let A(r) be a given convex jfunction defined for
0=7r< R (< + «) and satisfying

A(r)

- = 4+ o,
k- — log (R — 7)

(1)
Then there exists a function f(z) regular in |z| < R and such that
(1) af Mr) s of finite order,

(2) T(r, f) ~ A(r) (r—R—);

(i) of A(r) has infinite order, (2) still holds provided r avoids
an exceptional set K of intervals tn [0, R). The set E satisfies

(3) means E(r, R) = o(%l) (r—R—),
where E(r, R) denotes the intersection of E with (r, R) and 7(= 1) s
a given constant,

We have assumed convexity instead of logarithmic convexity
because, for functions defined on a finite interval, these two notions
are asymptotically equivalent.

In a paper as yet unpublished, J. Clunie has improved the results
of [2] by eliminating the need for any exceptional sets. It seems
that, with a few modifications, his ingenious argument would lead to
an improvement of Theorem 1 which, in addition to removing the
exceptional set £, would also replace the condition (1) by the simpler

lim A(r) = + oo .
r—>R—

The construction given here of a function f(z) satisfying (2) may
be of interest because of its relative simplicity, and also because with
minor modifications, given in § 5 of this note, it yields a very simple
solution of a problem of Bloch and Nevanlinna.

I would like to thank Professor Edrei for suggesting the problem
of finding an analogue for the disk of the results in [2]. I am also
indebted to Professor Edrei and Dr. G. T. Cargo for their helpful
remarks about the Bloch-Nevanlinna problem, and to Dr. Clunie for
allowing me to see the manuscript of his paper.

1. Preliminaries. It is clearly no restriction to assume R =1
and to consider only funections A(r) of the special form

(L. A = [ p(tyat 40 = 0),
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where ¢(t) is continuous, strictly increasing and unbounded. This is
justified by the elementary remark that any A(r) satisfying the con-
ditions of Theorem 1 is asymptotically equivalent, as » —1 —, to a
function of the form (1.1) [ef. for example 12, p. 69].

We shall need:

LEMMA 1. Let A(r) and G(r) be positive, continuous, inereasing,
unbounded functions defined for r* =r <1 (r* = 0) and such that

LA
(1.2) }Lrlrl T + oo,
Then the function
o A®)
(1.3) ) = int oy

has the following properties on the interval r* < r < 1:
(i) 1t s positive, nondecreasing, continuous and unbounded;
(ii) the function

A(r)

B(r)

1s unbounded and strictly increasing.

(1.4) B(r) =

Proof. The properties (i) as well as the inequality

A(r)

follow at once from the definition (1.3).
From (1.5) we deduce that B(r) is unbounded. To verify that it
is increasing, let r, r’ satisfy

rrsr<r <,
By definition, for some ¢, such that » < ¢, <1 we have

— A
(1.6) Gl =Z2 -

If ¢, < 7', the relations (1.6) and (1.5) (with » replaced by ') imply

A(r) Gy = A0
B = G(t) < G(r) = B

and hence

1.7 B(r) < B(v') .
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If v <t, then by the definition (1.3) and (1.6),

n < Ai) _
B(r") ém*ﬁ@") ’
which implies B(r") = B(r). Thus (1.7) follows from the inequality
A(r) < A(»"). This completes the proof of Lemma 1.

In the sequel, we shall use the symbol K to denote a positive
constant depending on one or more parameters., Since most of the
inequalities in §§ 2-5 are valid only for values of certain parameters
t,r, p, --- sufficiently close to some limit, it is convenient to indicate
this fact by writing, immediately after the relevant inequality,
G =t<l), (T =r<l), (p=p),--+. The quantities K, t,, *,, Do, ***
are not necessarily the same each time they occur.

We assume that the reader is familiar with the fundamental con-
cepts of Nevanlinna’s theory of meromorphic functions, and in parti-

cular with the symbols: l:)g, w(r, f), N(r, f).

2. Construction of a function f(z) with N{r, 1/f) ~ 4A(r). Let
A(r) be any given function of the form (1.1) such that the growth
condition (1) is satisfied. Denote the order of A(r) by X, and choose
a constant A such that, if A is finite,

(2.1) A>nt2.

If » = + oo, we consider the arbitrary number z(= 1) which appears
in (3) and require that A satisfy

(2.2) A > 6.

Then define a function G(r) on 0 < » < 1 by

=
1—7rJ)"

By (1), A(r) and G{r) satisfy the hypotheses of Lemma 1, and hence
there exists a continuous, nondecreasing, unbounded function B(r) such
that, on some interval »* < » < 1,

G(r) = max {1/71—(?)— , Alog

(2.3) B(r) = VA ,
A A(r)
(2.4) Blr) = Aozl 1)’

and such that the function

2.5 B(r) = A1)
(2.5) (r) )
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is continuous, increasing, and unbounded.
Let « be any constant such that 0 < @ <1 and

aB(r v/ B(r*) <1,

and observe that the equations

(2.6) k = aB(r )V A(r.) k=1,2,--+)
define uniquely an increasing sequence {r,}, with lim», = 1.
Je—rco
Next, put
k
E—exp|—m oo ) = B k=1
si=e p(m/ﬁm)> exp (B(r)) (e =1)

and note that s increases to + oo with &, while the terms s, form a
monotone sequence converging to 1.

Denote by [x] the greatest integer in z, and define new sequences
{q:} and {Q:} by

qr = [8ks;s; ++ 8;] k=1),
Qk:(I1+Q2+"'+Qk (kgl)-

The following relations are elementary consequences of the above
definitions and will be taken for granted.

(2.7) Q. > sk = e”” (k=1),
(2.8) Qess > Qi (kz1),
(2.9) lim Jer — 1

e gy
(2.10) lim Z& = ¢,

k—oo k
Finally, we define a sequence {f,} by the conditions
(2.11) B(te) = Qs (k=1,2,--+),

it is clear that this sequence exists and is uniquely defined, with
0<t, <ty < +++<1and lim¢, =1,

k—oo

We consider now the formal product

(2.12) i1+ {2)") = r@
k=1 tk
and establish some of its simple properties.
If p is any number in ¢ <0< 1, we can define an integer
= p(p) by
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(2'13) tp é lo < tp+1 .

Then if |2z| = r < p, we have in view of (2.8)

<)

These inequalities imply that the product (2.12) converges uniformly
for |z| = o< p), and hence f(?) is regular for |z| < 1.

It is clear from the representation (2.12) that the zeros of f(z)
satisfy

2

(2.14) > ;

tg>p

( 1 {0 0=t<t)
’I’Lt,——):
f Q. G =t<tn; k=1).

Using (2.9), (2.10) and (2.11), we have
1
and hence
(2.15) N(r, %) ~ A(r) (r—1-—).

We proceed to estimate the maximum modulus of f(z). Let ¢, <
r<o<1, p=p@). Then

(2.16) log M(r, f) :z,czgrlog (%-)qur S log (1 n {%}‘Uc)

ip=r

o (1 ) + Zes (14 1))

= N<r, 310— + plog2 + 3 log( {ti}qk) .

tg>p &

+

Using log (1 + ) < ¢ (x > 0), (2.14) and Jensen’s theorem, we obtain
2.17) N(q» 7) T(r, f)

< log M(r, f) < N(r, %) +p +(—;—)””;{7 :

3. Proof of Theorem 1 when /(r) has finite order N. Putting
0 = )\ + 1/2, the definition of order implies

1

(ro=r<1).
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Inereasing, if necessary, the value of 7, we may associate with each
+ in the interval », < 7 < 1 an integer p such that

1
(3.2) Qpy = m < ¢y,

and then select any p in the interval
(3.3) by =0 <ty

Since (3.3) coincides with (2.13), we see that the estimates following
(2.13) will be valid if we can show that » < p.

By (3.2), (3.3), (2.11) and (1.1), we have

1 2 g(1+p)/2 2 1 -+ 0
S — < 2 Hdt < = (=0
oy < B =60 < g7 et < 2 (29,
so that, by (3.1)
1 20+1
= - ad— o
and hence
1=7 o (zr<y),
1—p
(3.4) ¢<1;7”<p<1.
Using (3.2) and (3.4), we have
5 ry?_o - S"@ 2
(3.5) (p) p_r<exp< qprt>1_r
1 1—7 2
< exp( d—rpe 2 ) T @
(r—1-).
Returning to (2.7), and using (2.9) and (3.2), we have
B(r,) < log ¢, = log ¢,_, + o(1)
<(7L+2)log1_1_T+o(l) (r—1-—),
so that by the definition (2.1)
(3.6) B(r,) < Alog —* (ro=7<1).

Hence (2.4) and (1.4) imply
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1 A(r,) 1
Al = 2. = B Al

and this shows that », < ». Using (2.6), (3.6) and (2.4), we have

1
1—7r

p < B(r,)V'B(r,) < Alog V' B(r)

< A/ A4(r) log . (ro=r<1),

so that, in view of the growth condition (1),
3.7 = o(A(r)) (r—1-).

Theorem 1 then follows, for functions of finite order, on combining
(3.5), (3.7) and (2.15) with (2.17). In fact, it is clear from (2.17) that
the method yields the additional information

T(r, f) ~ N(r, ;) ~ log M(r, f) ~ A(r) (r—1-).

4. Remarks on the infinite order case. Since the proof when
A = + oo proceeds in much the same way as the one given in Section
3 for finite orders, a sketch of the argument used will suffice.

The quantities 0 and p given in (2.17) are chosen as follows: For
each r in r, = r <1, p is taken so that

4.1) log V4(©) _ p—7
V/'6(0) 0

It is not hard to see that such a p = p(r) exists and is unique. Then
let p be the integer determined by

(4'2) Qp é ¢([0) < Qp+1 .
The definitions of ¢, and Q,, together with (4.1) and (4.2), imply

(4.3) (%)“’p 0 — = o(l) (r—1-—).

The exceptional set F needed when A = + co is defined by

E = {r: p(r) >aBrWEr), r*=r<1}.
In view of (2.4)—(2.6), (2.17) and (4.3), r ¢ E implies

N(r, %) < T(r, f) = log M(r, f) < N(r, _lf> + K/ 4(r) log

1
1—7r’
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so that (2.15) and the growth condition (1) gives (2) for these 7.

To complete the proof of Theorem 1, it remains only to show that
I satisfies (3). This follows upon using (2.2), (2.3), (2.4) and (4.1) to
estimate o, and then using this estimate and (1.1) to see that rc K
implies

/1<r+(1_7”)7>> ¢t T (r=r<1).
A(r)

This relation together with Borel’s growth lemma ([1], p. 19) then
gives (3).

5. A solution of the Bloch-Nevanlinn problem. If F(z) ts
meromorphic in |z| <1, does T(r, F') = 0(1) tmply T(r, F'y = 0(1)?

This problem was posed by Bloch and Nevanlinna [9, p. 138], and
was first solved by 0. Frostman [4] who showed that the boundedness
of T(r, F') does not imply that of T(r, F'). Subsequently a number
of further solutions have been given (ef. [3], [5], [6], [7], [8], [10],
[11]).

Using the metheds of 8§ 2 and 3, we now econstruet a function
F(2) regular and bounded in the unit disk and such that T'(r, F") is
unbounded. In view of the importance of the Dirichlet integral

D[F] = ” | F'(2) [do
2| <1
it might be of interest to point out that our example is such that, by
choosing suitably one of the parameters involved, we can obtain D[F]
and F'(z) bounded and T(r, /) unbounded.
Let a(= 2) be an integer, and put

(5.1) Q=0 =—2 (@@ —1) (m=1),
k=1 a—1
(5.2) t,=1— L (m=1),
Q.
where v is a constant in 0 < v < 1. We shall verify that the product
T A
(5.3) &) =1 (1+{2)")

m

is analytic in the unit disk and satisfies

(5.4)  alog—L_ < T(r, £) < log M(r, f) < Blog
1—r 1—7r

(TO§T<1)y
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where a and B are any constants such that

(5.5) o<a<l, poyqleZ
a log a

If v and a are chosen so that v -+ (log 2/log @) < 1, we can take
B < 1. This implies that the function

(5.6) F@e) = | foa
is bounded on |z]| < 1, since by (5.4)
7@ = [ Mo, pHar = o) (21—1-).

Further, if we take v and a to permit £ < 1/2, then F'(z) has bounded
Dirichlet integral:

H| Fl(re®) Frdrdf < + o |

On the other hand, (5.4) shows that
1

(ro=r<1),

T(r, F") > alog T

so that F’(z) has unbounded characteristic on the unit disk.

The regularity of the product (5.3) is an immediate consequence
of the definitions (5.1) and (5.2), which imply that the series 3 |z/t, |*"
converges when |z| < 1.

To establish (5.4), let n(t) denote the number of zeros of f(z) in

|z] =t, and put N(r) = gr(n(t)/t)dt. By the definition of n(t), if
0
tw =t < t,4, then

. ’y mil 6tm%—l
n(t) = Qn = 77— < Qu + " —n(t)(1+ Qm>’

so that

(5.7) n(t) £ 2 < n(t)(@ + o(1)) t—1-).

Multiplying (5.7) by ¢! and integrating from ¢, to 7 yields
1

(r—1-—=).

5.8 LA |
(5.8) og <

! - < Nr) < (7 + o(1)) log

1
1—7r
The first of these inequalities, together with Jensen’s Theorem and
(6.5), implies



FUNCTIONS ANALYTIC IN A FINITE DISK 559

amgll < T(r, f) = log M(r, f) (ro=r<1).

— 7T

The proof of the last inequality in (5.4) is similarly easy. For
each r in ¢, = r <1 we choose the integer » = p(r) given by

(5.9) by = < tpyy

Estimating the maximum modulus of the produet (5.8), we have, as
in (2.16),

(5.10) log M(r, f) = mé,llog (1 + {%}am> + m§+1<ti>am

m

<ilog<l)a + plog 2 + f] (—t&y .
m=1 [ i1\ ¢

From (5.2) and (5.9) it is clear that

Y 1
a? < =
_QP—1—7"< 11—’

and hence

ploga < log T 1

Using this with (5.10) and putting & = » + 1, we obtain

log 2 1 e 6\
log M N 1 hd.2
og Mir, f) < N) + 22 10g -1 — + 33 (1),

1—7 ==k\{,

and this together with the second of the inequalities (5.8) implies

logz 1 o t a™
, M(r, 1)1 20
(6.11)  log M(r, f) < <7+ log a +of )> R g +m=k<tm>
r—1-).

To prove that >iu_.(¢:/t,)""is suitably small, use (5.1) and (5.2)
to see that

(5.12) 1—ar<t, <1— —é—m"" n=n).

Hence
m% (%) < K S = K 3 (ot

< K 3 (tgF)m» k= k) .
m=k
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By the second inequality in (5.12),

8" < et (k= k)
and hence
(5.13) s <%) < K S emn = 01) (k= o) .

Combining (5.11) and (5.13), the derivation of (5.4) is complete.
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