Pacific Journal of Mathematics

A CONVERGENT GRADIENT PROCEDURE IN PREHILBERT SPACES

EDWARD KENNETH BLUM

Vol. 18, No. 1

March 1966

A CONVERGENT GRADIENT PROCEDURE IN PREHILBERT SPACES

E. K. Blum

In this paper, we present a new method of approximating the minimum of a functional, J, defined on a prehilbert space and subject to constraints of the form $\phi_i(x) = 0$, $1 \le i \le p$, where the ϕ_i are also functionals on the space. The method generates a convergent sequence of approximations using the gradients of J and ϕ_i . However, it is not a steepest descent procedure with respect to J. A theorem is proven which establishes the convergence of the approximating sequence to the minimum.

The literature on extremal problems in abstract spaces is fairly extensive. We refer to the bibliographies in [1], [5] for a partial list. That part of the literature which deals with approximation procedures for finding extrema subject to various constraints is also extensive. Again, see [1], [5] and also [3] for bibliographies. In particular, gradient-type methods have received considerable attention recently in a variety of contexts as in [2], [7], [6] to mention a few. In this paper, we present a new method of approximating the minimum of a functional, J, defined on a prehilbert space and subject to equality constraints. The method generates a convergent sequence of approximations using gradients but it is not of the steepest descent type with respect to J.

2. Preliminary remarks. Let H be a prehilbert space. For $u, v, \in H$, we denote their inner product by $\langle u, v \rangle$ and $||u||^2 = \langle u, u \rangle$.

Let J and ψ_i , $1 \leq i \leq p$, be real functionals defined on some subset in H. We shall say that $u^* \in H$ is a solution of the minimization problem defined by $\{J, \psi_i\}$ if $\psi_i(u^*) = 0$, $1 \leq i \leq p$ and $J(u^*) \leq J(u)$ for those u in a neighborhood of u^* which satisfy the constraints $\psi_i(u) = 0$, $1 \leq i \leq p$.

By the gradient of J at u we mean an element of H, designated by $\nabla J(u)$, such that for all Δu in some neighborhood of $0 \in H$,

$$J(u + \Delta u) - J(u) = \langle \mathcal{P}J(u), \Delta u \rangle + \varepsilon(u, \Delta u)$$
,

where $|\varepsilon(u, \Delta u)|/||\Delta u|| \to 0$ as $\Delta u \to 0$. Similarly, $\nabla \psi_i(u)$ denotes the gradient of ψ_i at u.

If f is a real functional defined in a neighborhood of $u \in H$ and if $df(u; h) = \lim_{s\to 0} (f(u + sh) - f(u))/s$ exists for all $h \in H$, we call df(u; h) the weak differential of f at u with respect to h. The relation

between df(u; h) and $\langle \nabla f(u), h \rangle$ is well-known [8].

Now suppose that $\nabla J(u)$ and $\nabla \psi_i(u)$, $1 \leq i \leq p$, exist at u. Suppose further that the $p \times p$ Gram matrix,

$$D(u) = \left(\langle \nabla \psi_i(u), \nabla \psi_j(u) \rangle \right)$$

is nonsingular. Let γ be the *p*-dimensional row vector

$$\langle \langle \nabla J(u), \nabla \psi_1(u) \rangle, \cdots, \langle \nabla J(u), \nabla \psi_p(u) \rangle \rangle$$

and define $\lambda = (\lambda_1, \dots, \lambda_p)$ as the vector $\lambda = \gamma D^{-1}$. Then, as is wellknown, the "projection" of $\mathcal{P}J$ on the subspace $G \subset H$ spanned by $\{\mathcal{P}\psi_i(u) \mid 1 \leq i \leq p\}$ is given by $\mathcal{P}J_g(u) = \sum_{i=1}^p \lambda_j \mathcal{P}\psi_i(u)$. The component of $\mathcal{P}J$ orthogonal to G is

$$\mathcal{V}J_{T}(u) = \mathcal{V}J(u) - \mathcal{V}J_{G}(u)$$
 .

If u^* is a solution of the minimization problem defined by $\{J, \psi_i\}$ and $\mathcal{V}J(u)$, $\mathcal{V}\psi_i(u)$ exist as continuous functions of u in a neighborhood of u^* with $D(u^*)$ nonsingular, then by the Lagrange multiplier rule [4], [5], [8] it follows that $\mathcal{V}J_r(u^*) = 0$.

In the next section, we shall use this necessary condition as the basis for a gradient method of obtaining successive approximations which converge to u^* when certain regularity conditions hold in a neighborhood of u^* . With obvious modifications, the method can also be applied to the simpler problem of finding a solution of the system $\{\psi_i(u) = 0\}$. In this context, it generalizes a method given in [7] for finite-dimensional spaces.

3. The gradient method. For any $u \in H$, we shall use the notation " \overline{u} " to denote the normalized vector (1/||u||)u.

DEFINITION. Let u^* be a solution of the minimization problem defined by $\{J, \psi_i\}$. u^* is a regular minimum if there is a neighborhood, $N = N(u^*)$, of u^* in which the following conditions are satisfied:

- (1) $\mathcal{V}J(u)$ exists as a continuous function of u and $\mathcal{V}J_{d}(u) \neq 0$ for $u \in N;$
- (2) $\nabla \psi_i(u)$, $1 \leq i \leq p$, exists as a continuous function of u and $\nabla \psi_i(u) \neq 0$ for $u \in N$;
- (3) For each $u \in N$, the matrix D(u) is nonsingular;
- (4) For $\theta(u) = \arcsin(|| \mathcal{F}J_{\mathfrak{r}}(u) ||/|| \mathcal{F}J(u) ||)$, the gradient $\mathcal{F}\theta(u)$ exists and $|| \mathcal{F}\theta(u) || > a > 0, u \neq u^*$. At u^* the weak differential $d\theta(u^*; h)$ exists and $\langle \mathcal{F}\theta(u), h \rangle \rightarrow d\theta(u^*, h)$ as $u \rightarrow u^*$.

There exist constants $a_1 > 0$ and $a_2 > 0$ such that

$$\sum\limits_{1}^{p}\cos^{_{2}}lpha_{_{1}}+\coslpha_{_{0}}\coseta/|\cos\gamma|>a_{_{1}}$$

and $|\cos \gamma| > a_2$ for all $u \in N$ except possibly u^* . A neighborhood such as N is called a *regular* neighborhood of u^* .

REMARK. $\theta(u^*) = 0$ by the necessary condition for a minimum. If u^* is the unique minimum, this condition is also sufficient under the assumptions required in the multiplier rule.

LEMMA. Let u^* be the unique solution of the minimization problem defined by $\{J, \psi_i\}$ and let N be a regular neighborhood of u^* . For $u = (u^* + \Delta u) \in N$, $\Delta u \neq 0$, let

$$(6) \qquad h_{G} = h_{G}(u) = -\sum_{i=1}^{p} \left(\psi_{i}(u) / || \nabla \psi_{i}(u) || \right) \overline{\nabla \psi_{i}(u)} ,$$

$$(7) \qquad h_{T} = h_{T}(u) = -(1/||\nabla J_{G}(u)|| \cdot |\langle \nabla \theta(u), \overline{\nabla J_{T}(u)} \rangle|) \nabla J_{T}(u) ,$$

and $h = h_{d} + h_{r}$. Then there exists positive constants k, d and r, with k < 1, such that for all u with $0 < || \Delta u || < r$, u is in N and $|| u + sh - u^{*} || < k || \Delta u ||$ whenever d/2 < s < d.

Proof. By the definition of gradient,

$$\psi_i(u)=\psi_i(u)-\psi_i(u^*)=ig< arphi\psi_i(u^*),\, arLauig>+arepsilon_i,\,\,1\leq i\leq p\,\,,$$

where $\varepsilon_i = \varepsilon_i(u^*, \Delta u)$ is such that $|| \varepsilon_i ||/|| \Delta u || \to 0$ as $\Delta u \to 0$.

(For convenience, we shall adopt the notational convention that throughout the proof any quantity designated by ε with appropriate subscripts or superscripts is such that $|| \varepsilon ||/|| \Delta u || \to 0$ as $\Delta u \to 0$. We shall make no further mention of this property.)

Now, by the continuity of $\nabla \psi_i$ at u^* (condition 2 of the definition), $\psi_i(u) = \langle \nabla \psi_i(u), \Delta u \rangle + \tilde{\varepsilon}_i$. Using these relations in (6), we obtain

(8)
$$h_{G} = -\sum_{1}^{p} \langle \overline{V\psi_{i}}(u), \Delta u \rangle \overline{V\psi_{i}(u)} + \varepsilon_{G}.$$

Since $u + sh - u^* = \Delta u + sh_G + sh_T$, we have

$$\begin{array}{ll} (9) & || \, u + sh \, - \, u^* \, ||^2 \\ & = || \, \varDelta u \, ||^2 + \, 2s \, \langle \varDelta u, \, h_g \rangle + \, 2s \, \langle \varDelta u, \, h_T \rangle + \, s^2 (|| \, h_G \, ||^2 + || \, h_T \, ||^2) \, . \end{array}$$

From (8) it follows that

(10)
$$\langle h_{\mathcal{G}}, \Delta u \rangle = - || \Delta u ||^2 \sum_{1}^{p} \cos^2 \alpha_i + \langle \varepsilon_{\mathcal{G}}, \Delta u \rangle$$
,

where the α_i are given in condition 5 of the definition. Applying the Schwarz inequality to (8) yields

(11)
$$||h_{G}||^{2} \leq || \Delta u ||^{2} (p \sum_{1}^{p} \cos^{2} \alpha_{i} + w_{G}(\Delta u)).$$

where $w_{\mathcal{G}}(\varDelta u) \to 0$ as $\varDelta u \to 0$.

Using (7), we find

$$\langle h_r, \Delta u \rangle = - \frac{|| \mathcal{F} J_r(u) ||}{|| \mathcal{F} J_d(u) ||} \frac{|| \Delta u || \cos \alpha_0}{|| \mathcal{F} \theta(u) || |\cos \gamma|} = - \tan \theta(u) \frac{|| \Delta u || \cos \alpha_0}{|| \mathcal{F} \theta(u) || |\cos \gamma|},$$

where α_0 and γ are given in condition 5. By the properties of $\theta(u)$ in condition 4 and the definition of the weak differential, we have

$$\tan \theta(u) = \tan \theta(u^*) + \sec^2 \theta(u^*) \langle \nabla \theta(u), \Delta u \rangle + \hat{\varepsilon} = \langle \nabla \theta(u), \Delta u \rangle + \hat{\varepsilon} .$$

Since $\langle \nabla \theta(u), \Delta u \rangle = || \nabla \theta(u) || || \Delta u || \cos \beta$, we obtain

$$(12) \qquad \langle h_{ au}, \, {\it \Delta}u
angle = - \mid\mid {\it \Delta}u \mid\mid^{_2} (\cos lpha_{\scriptscriptstyle 0} \cos eta \mid \cos \gamma \mid + w({\it \Delta}u)) \; ,$$

where $w(\Delta u) \rightarrow 0$ as $\Delta u \rightarrow 0$. Similarly, from (7) we see that

(13)
$$||h_{T}|| = \frac{||VJ_{T}(u)||}{||VJ_{G}(u)||} \frac{1}{||V\theta(u)|| |\cos \gamma|} = ||\Delta u|| (\cos \beta / \cos \alpha + w_{T})$$

where $w_T \to 0$ as $\Delta u \to 0$. Combining (9)-(13), we obtain

$$(14) \qquad ||\, u + sh - u^*\,||^2 \leq ||\, {\it \Delta} u\,||^2\, (arPhi_{_1}\!(s) + 2sw_{_1}\!({\it \Delta} u) + s^2w_{_2}\!({\it \Delta} u)) \;,$$

where $w_1(\varDelta u) \rightarrow 0$ and $w_2(\varDelta u) \rightarrow 0$ as $\varDelta u \rightarrow 0$ and

$$egin{aligned} arPhi_1(s) &= 1 - 2bs + c_1 s^2 \ , \ b &= \sum\limits_1^p \cos^2\!lpha_i + \coslpha_0 \coseta/|\cos\gamma| \ , \ c_1 &= p \sum\limits_1^p \cos^2\!lpha_i + (\coseta/\cos\gamma)^2 \ . \end{aligned}$$

If we replace $\Phi_1(s)$ by $\Phi(s) = 1 - 2bs + cs^2$, where

$$c=c_{\scriptscriptstyle 1}+(2\sum_{\scriptscriptstyle 1}^{\scriptscriptstyle p}\cos^{\scriptscriptstyle 2}\!lpha_{\it i}+1+1/|\cos\gamma\,|)/|\cos\gamma\,|$$
 ,

the inequality in (14) remains valid. Now, $0 < \varPhi(s) < 1$ for

0 < s < 2b/c. Since $c \leq p^2 + (2p+3)/|\cos \gamma|^2$ and, by condition 5 of the definition, $|\cos \gamma| > a_2 > 0$ and $b > a_1 > 0$, it follows that $0 < \varPhi(s) < 1$ for 0 < s < d, where

(15)
$$d = 2a_1a_2^2/(a_2^2p^2 + 2p + 3)$$

For d/2 < s < d and $0 < || \Delta u || < r$ with r sufficiently small, there exists a constant k^2 such that $0 < \varPhi(s) + 2sw_1(\Delta u) + s^2w_2(\Delta u) < k^2 < 1$. Hence, $|| u + sh - u^* || < k || \Delta u ||$ whenever d/2 < s < d, which completes the proof.

The lemma serves as the basis of a convergent procedure for approximating u^* , as described in the following theorem.

THEOREM. Let u^* , k, d and r be as in the lemma. Let $u_0 \in H$ be such that $|| u_0 - u^* || < r$. For every integer $n \ge 0$ define

(16)
$$\begin{cases} h_{G}^{(n)} = -\sum_{i=1}^{p} \left(\psi_{i}(u_{n}) / || \nabla \psi_{i}(u_{n}) || \right) \overline{V \psi_{i}(u_{n})} ,\\ h_{T}^{(n)} = -\left(1 / || \nabla J_{G}(u_{n}) || \cdot | \langle \nabla \theta(u_{n}), \overline{\nabla J_{T}(u_{n})} \rangle | \right) \nabla J_{T}(u_{n}) ,\\ h_{n} = h_{G}^{(n)} + h_{T}^{(n)} ,\end{cases}$$

(17)
$$u_{n+1} = u_n + s_n h_n$$
, where $d/2 < s_n < d$.

Then $\lim_{n \leftarrow \infty} u_n = u^*$ and in fact,

(18) $||u_n - u^*|| < k^n ||u_0 - u^*||$.

Proof. Since $||u_0 - u^*|| < r$, u_0 satisfies the conditions on the point u of the lemma. Comparing h_0 with h and s_0 with s of the lemma, we see immediately that $||u_1 - u^*|| < k ||u_0 - u^*||$. Since k < 1, $||u_1 - u^*|| < r$ and the lemma can be applied at u_1 to obtain $||u_2 - u^*|| < k ||u_1 - u^*|| < k^2 ||u_0 - u^*||$. By induction, (18) is immediate and this establishes the theorem.

The application of this theorem to numerical procedures for solving minimization problems with equality constraints will be the subject of a forthcoming paper.

References

1. H. Antosiewicz and W. Rheinboldt, Numerical analysis and functional analysis, Survey of Numerical Analysis, McGraw-Hill, 1962.

2. A. V. Balakrishnan, An operator theoretic formulation of a class of control problems and a steepest descent method of solution, J.S.I.A.M. Control, Ser. A, Vol. 1, No. 2, 1963. 3. A. V. Balakrishnan and L. W. Neustadt, ed., Computing Methods in Optimization Problems, Academic Press, 1964.

4. E. K. Blum, Minimization of functionals with equality constraints, Abstract 64T-381, Notices A. M. S., August 1964.

5. _____, Minimization of functionals with equality constraints, J.S.I.A.M. Control. Ser. A, vol. 3, No. 2, 1965, pp. 299-316.

6. A. Goldstein, *Convex programming in Hilbert space*, Bull. Amer. Math. Soc. **70**, No. 5, September 1964, 709-710.

7. W. Hart and T. S. Motzkin, A composite Newton-Raphson gradient method for the solution of systems of equations, Pacific J. Math. 6 (1956), 691-707.

8. L. Liusternik and V. Sobolev, Elements of Functional Analysis, Ungar, 1961.

Received February 26, 1965.

WESLEYAN UNIVERSITY MIDDLETOWN, CONNECTICUT

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California

R. M. BLUMENTHAL

University of Washington Seattle, Washington 98105 *J. DUGUNDJI University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo Japan

Pacific Journal of MathematicsVol. 18, No. 1March, 1966

Edward Joseph Barbeau, <i>Semi-algebras that are lower semi-lattices</i>	1
Steven Fredrick Bauman, <i>The Klein group as an automorphism group</i> <i>without fixed point</i>	9
Homer Franklin Bechtell, Jr., <i>Frattini subgroups and</i> Φ -central groups	15
Edward Kenneth Blum, A convergent gradient procedure in prehilbert	
spaces	25
Edward Martin Bolger, The sum of two independent exponential-type	
random variables	31
David Wilson Bressler and A. P. Morse, <i>Images of measurable sets</i>	37
Dennison Robert Brown and J. G. LaTorre, A characterization of uniquely	
divisible commutative semigroups	57
Selwyn Ross Caradus, <i>Operators of Riesz type</i>	61
Jeffrey Davis and Isidore Isaac Hirschman, Jr., <i>Toeplitz forms and</i>	
ultraspherical polynomials	73
Lorraine L. Foster, On the characteristic roots of the product of certain	
rational integral matrices of order two	97
Alfred Gray and S. M. Shah, Asymptotic values of a holomorphic function	
with respect to its maximum term	111
Sidney (Denny) L. Gulick, <i>Commutativity and ideals in the biduals of</i>	121
G. I. Kurowski. Eurther results in the theory of monodiffuin functions	120
U. J. Kulowski, <i>Further results in the theory of monoallytic functions</i>	139
solf injective	140
Colvin T. Long. On weak numbers having normality of order h	149
Carvin 1. Long, On real numbers naving normality of order k	161
Le Will Nond, An inequality for operators in a Hubert space	101
John William Neuberger, The lack of self-adjointness in three-point	165
C A D is a first of the first o	103
C. A. Persinger, Subsets of n-books in E ⁹	169
Oscar S. Rothaus and John Griggs Thompson, A combinatorial problem in	175
the symmetric group	175
Rodolto DeSapio, Unknotting spheres via Smale	179
James E. Shockley, <i>On the functional equation</i>	10-
$F(mn)F((m, n)) = F(m)F(n)f((m, n))\dots$	185
Kenneth Edward Whipple, <i>Cauchy sequences in Moore spaces</i>	191