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Let X;, X; be nondegenerate, independent, exponential-type
random variables (r.v.) with probability density functions,
(p.d.f.) filx:; 0), fo(xs3 0), (mot necessarily with respect to
the same measure), where f;(x;;0) = exp {x;p;(0) + ¢;(0)} for
f¢c(a,b) and p;(0) is an analytic function of 0 (for Refd < (a,b))
with pi(6) never equal to zero on (a,b). If X,, X, are neither
both normal nor both Poisson type r.v.’s, then X; + X, is an
exponential-type r.v. if and only if pi(6) = pi(6).

2. Lemmas. It follows from Patil’s result ([3]) that a r.v. X
is of exponential type if and only if the cumulants, ), (6), exist and
satisfy

(1) Ni(0) = D' (O)n;41(0) for j=1,2,3,---.

Lehmann ([2], p. 52) has shown that ¢(¢) and hence also \,(6) are
analytic functions of »(6). Then A;(#) is an analytic function of 4
for Ref e (a,bd).

Let A;:(0) be the j* cumulant of X; and A\ @) the j** cumulant
of Y. Then

(2) Ni(0) = Nja(0) + Njo(6)
(3) N,i(0) = Di(O)Nj41,:(0) for 7=1,2,8,---.

Let hj(g) = kj,l(ﬁ)xz,z(ﬁ) - )‘jyz(e)xz,l(ﬁ) and 0(0) = 7\'2.2(0)/7‘*2,1(‘9).

LeMMA 1. If h(60) =0 and if ¢'(0) =0, then either X, and X,
are both normal or pi(0) = py6h).

Proof. Since hy(6) = 0,

(4) Aao(0) = €(O)Ns,1(0) .
Since ¢'(6) = 0,
(5) Ny,o0) = c(O)n,1(0) .

From (8), (4) and (5) it follows that

DPYUOMNs,2(0) = e(0)Di(0)Ns,1(0) = DI(O)Ns,5(0) .
31
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If N;4(0) =0, then A,,(f) = 0 and X, X, are both normal. If there is
a point 6, such that A, ,(f) = 0, then there is a neighborhood, N(4,), in
which »;.(6) = 0. For 6 e N(6,), pi(f) = pyd). By analyticity, pi(f) =
240) for O e (a,bd).

LEMMA 2. If hi(0) =0 for 7 > 2 and if ¢'(8) = 0, then X, and
X, are Poisson type r.v.’s.

Proof. Sinee h;(0) = 0,
(6) Njo(0) = e(0)N;,1(0) .
Differentiating (6) and using (3), we get

c(OIN;1(0) + ¢(O)N,1(0) = DO ;41,2(0)

Then,

(7) e(O)PIOINj411(0) + €' (OIN;,1(60) = PUOYC(OIN;411(0)
In particular,

(8) e(0)Di(OMs,1(0) + €'(O),1(0) = PYO)e(O)Ns,1(0)

Multiplying (7) by A\s.(6) and (8) by \;.;.(6), we find that
(9) (0N, (OIN11,1(0) — Ny, i(O)N;,:(0)] = O for j=2.

Since ¢’'(6) = 0, there is a sub-interval M of (a, b) in which ¢'(9) = 0.
For 6e M,

7\'2,1(0)7\'j+1,1(9) - >h3,1(‘9)7\'1',1(‘9) =0,

or

— )\’3,1(0)
(10) Mna0) = 3200,0)

By analyticity, (10) is true for all 6 € (a,b). Now let a(0) = \;1(0)/Ns,,(0).
Then, by (3),

21(O)N,1(0) = N31(0) = @/ (O)N,0(0) + a(ﬁ)h;,l(ﬁ)
= @/(0)N,1(0) + a(0)pl(O)Ns,1(0) -

Since A\, (0) = a(0)N;.(0), it follows that
a'(0)\,,(6) = 0
So a/(f) = 0 and a(f) = d. Then (10) becomes

(11) Njra(0) = dngi(6) for j=2.
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This implies

(12) Nja(0) = A7\, (0) forj=2.
By (6),

(13) Njo(0) = di%c(6)hs,1(6) for j=2.
Now,

p{(ﬁ) = >"{,1(0)/>"2,1(0) ’
D1(0) = X3,1(0)/X5,1(0) = N3,1(0)[dN,4(6) .

So

(14) Ma(0) = d"Ngn(60) + E .
Similarly,

(15) Mal(0) = d6(ONs(6) + E, .

Using (12), (13), (14) and (15), we find that
log M.(2; 0) = kit + d7\,,(0)(e* — 1)
log My(t; 0) = kst + d™°c(0)N1(6)(e* — 1),

where M(t; 6) is the moment generating function corresponding to
Si(x;; 0).

This concludes the proof of Lemma 2.

3. The sum of two independent exponential-type random
variables,

THEOREM 1. If X, X, are neither both normal nor both Poisson
type rv.’s, then X, + X, is an exponential-type r.w. tf and only vf
pi(0) = pi(0).

Proof. If pi(0) = py8), then if follows from (2) and (3) that

7\'j+1(‘9) = 7“a'+1.1(‘9) + 7“j+;,2(9)
= [pIO)]7N;1(0) + [Di(6)]7*N],.(6)
= [pi(O)]N5(0) .

Conversely, assume X, + X, is an exponential-type r.v.. Then, using
1), (2), and (3), we find that

(16) P(O)Ns4(0) + Xjo(0)] = DUOWN;(0) + DAOIN;,5(0)

In particular,
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17 D' (O)Xer(0) + Ngo(0)] = DIOI1(6) + DIOIN25(0) .

Multiplying (16) by A.,(6) and (17) by A;,(f) and then subtracting, we
get

(18) [2'(6) — pu0)]hy(0) = 0 forj=2.
Now, if for some j, = 2, h,(0) # 0, then there is a subinterval, M, of
(@, b) in which h;(0) # 0. Then, for 6 e M, py(f) = p'(f). By analyti-
city, py(6) = p'(0) for all fe(a,b). Substitution in (16) yields p;(0) =
p'(6) for 6e(a,b). If, on the other hand, h 0) = 0, for j = 2, the
result follows from Lemmas 1 and 2 since we assumed that X, X,
are neither both normal nor both Poisson type r.v.’s.

It should be noted that Girshick and Savage [1] proved that if
X, and X, are independent identically distributed r.v.’s such that their
sum is of exponential-type, then X, and X, are also of exponential-

type.
The following theorem gives necessary and sufficient conditions
for the sum of two Poisson-type r.v.’s to be exponential-type.

THEOREM 2. If log M(t; 0) = Cit + A (0)[I*¢ — 1], then X, + X,
18 an exponential-type r.v. tf and only tf either b, = b, or pi(f) =
pi(0).

Proof. If X, + X, is an exponential-type r.v., then, as in the
proof of the preceding theorem,
[0'(0) — piAO)]hs(6) = O forj=2.
Equivalently,
X510, (8) — N o(O)N0,2(0)]
= PUOD ()]s (O,(0) — N, o(O)N21(0)] for j =z 2.
Since, for j = 2, ©;,(0) = biA(0), (19) becomes
[bib; — bib11A(0)A(0) = piO)[p'(O)][bib; — bibi]AL(9)A(0) .
But A,(0)A.(6) > 0, so that
[bib: — bibi] = pi(O)[p'(0)]'[bibF — bibiI .

Now, if bjb2=0ib; for all j = 2, then b} = b}, so that b =b,. On
the other hand, if, for some j,, bjob? — bjeb? = 0, then pi(4) = p'(f) and
it follows that pi(8) = pi(0).

Conversely, if pi(0) = py(0), then X, + X, is an exponential-type
r.v. since (1) is satisfied. If b, = b, let

(19)
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p'(0) = [41(0) + A 0)]/b.[A(0) + A.0)] .

It is easy to see that (1) is again satisfied.

The author wishes to thank William L. Harkness for his help in
the preparation of this paper.
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