Pacific Journal of Mathematics ### THE SUM OF TWO INDEPENDENT EXPONENTIAL-TYPE RANDOM VARIABLES EDWARD MARTIN BOLGER Vol. 18, No. 1 March 1966 ## THE SUM OF TWO INDEPENDENT EXPONENTIAL-TYPE RANDOM VARIABLES #### E. M. BOLGER Let X_1, X_2 be nondegenerate, independent, exponential-type random variables $(\mathbf{r.v.})$ with probability density functions, $(\mathbf{p.d.f.})$ $f_1(x_1;\theta), f_2(x_2;\theta)$, (not necessarily with respect to the same measure), where $f_i(x_i;\theta) = \exp\{x_ip_i(\theta) + q_i(\theta)\}$ for $\theta \in (a,b)$ and $p_i(\theta)$ is an analytic function of θ (for $Re\ \theta \in (a,b)$) with $p_i'(\theta)$ never equal to zero on (a,b). If X_1, X_2 are neither both normal nor both Poisson type r.v.'s, then $X_1 + X_2$ is an exponential-type r.v. if and only if $p_1'(\theta) = p_2'(\theta)$. 2. Lemmas. It follows from Patil's result ([3]) that a r.v. X is of exponential type if and only if the cumulants, $\lambda_j(\theta)$, exist and satisfy $$\lambda_j'(\theta) = p'(\theta)\lambda_{j+1}(\theta) \qquad \text{for } j = 1, 2, 3, \cdots.$$ Lehmann ([2], p. 52) has shown that $q(\theta)$ and hence also $\lambda_j(\theta)$ are analytic functions of $p(\theta)$. Then $\lambda_j(\theta)$ is an analytic function of θ for $Re \theta \in (a, b)$. Let $\lambda_{j,i}(\theta)$ be the j^{th} cumulant of X_i and $\lambda_j(\theta)$ the j^{th} cumulant of Y_i . Then $$\lambda_i(\theta) = \lambda_{i,1}(\theta) + \lambda_{i,2}(\theta)$$ (3) $$\lambda'_{i,i}(\theta) = p'_i(\theta)\lambda_{i+1,i}(\theta) \qquad \text{for } j = 1, 2, 3, \cdots.$$ Let $$h_i(\theta) = \lambda_{i,1}(\theta)\lambda_{2,2}(\theta) - \lambda_{i,2}(\theta)\lambda_{2,1}(\theta)$$ and $c(\theta) \equiv \lambda_{2,2}(\theta)/\lambda_{2,1}(\theta)$. LEMMA 1. If $h_3(\theta) \equiv 0$ and if $c'(\theta) \equiv 0$, then either X_1 and X_2 are both normal or $p'_1(\theta) \equiv p'_2(\theta)$. Proof. Since $h_3(\theta) \equiv 0$, $$\lambda_{3,2}(\theta) = c(\theta)\lambda_{3,1}(\theta) .$$ Since $c'(\theta) \equiv 0$, $$\lambda_{2,2}'(\theta) = c(\theta)\lambda_{2,1}'(\theta) .$$ From (3), (4) and (5) it follows that $$p_2'(\theta)\lambda_{3,2}(\theta) = c(\theta)p_1'(\theta)\lambda_{3,1}(\theta) = p_1'(\theta)\lambda_{3,2}(\theta)$$. If $\lambda_{3,2}(\theta) \equiv 0$, then $\lambda_{3,1}(\theta) \equiv 0$ and X_1, X_2 are both normal. If there is a point θ_0 such that $\lambda_{3,2}(\theta) \neq 0$, then there is a neighborhood, $N(\theta_0)$, in which $\lambda_{3,2}(\theta) \neq 0$. For $\theta \in N(\theta_0)$, $p_1'(\theta) = p_2'(\theta)$. By analyticity, $p_1'(\theta) = p_2'(\theta)$ for $\theta \in (a, b)$. LEMMA 2. If $h_j(\theta)\equiv 0$ for j>2 and if $c'(\theta)\not\equiv 0$, then X_1 and X_2 are Poisson type r.v.'s. Proof. Since $h_i(\theta) \equiv 0$, $$\lambda_{i,2}(\theta) = c(\theta)\lambda_{i,1}(\theta) .$$ Differentiating (6) and using (3), we get $$c(\theta)\lambda'_{j,1}(\theta) + c'(\theta)\lambda_{j,1}(\theta) = p'_2(\theta)\lambda_{j+1,2}(\theta)$$. Then, $$(7) c(\theta)p_1'(\theta)\lambda_{j+1,1}(\theta) + c'(\theta)\lambda_{j,1}(\theta) = p_2'(\theta)c(\theta)\lambda_{j+1,1}(\theta).$$ In particular, (8) $$c(\theta)p_1'(\theta)\lambda_{3,1}(\theta) + c'(\theta)\lambda_{2,1}(\theta) = p_2'(\theta)c(\theta)\lambda_{3,1}(\theta)$$. Multiplying (7) by $\lambda_{3,1}(\theta)$ and (8) by $\lambda_{j+1,1}(\theta)$, we find that $$(9) c'(\theta)[\lambda_{2,1}(\theta)\lambda_{j+1,1}(\theta)-\lambda_{3,1}(\theta)\lambda_{j,1}(\theta)]=0 \text{for } j\geqq 2.$$ Since $c'(\theta) \not\equiv 0$, there is a sub-interval M of (a, b) in which $c'(\theta) \not= 0$. For $\theta \in M$, $$\lambda_{\scriptscriptstyle 2,1}\!(heta)\lambda_{\scriptscriptstyle j+1,1}\!(heta)-\lambda_{\scriptscriptstyle 3,1}\!(heta)\lambda_{\scriptscriptstyle j,1}\!(heta)=0$$, or (10) $$\lambda_{j+1,1}(\theta) = \frac{\lambda_{3,1}(\theta)}{\lambda_{2,1}(\theta)} \lambda_{j,1}(\theta)$$. By analyticity, (10) is true for all $\theta \in (a, b)$. Now let $a(\theta) = \lambda_{3,1}(\theta)/\lambda_{2,1}(\theta)$. Then, by (3), $$p_1'(\theta)\lambda_{4,1}(\theta) = \lambda_{3,1}'(\theta) = a'(\theta)\lambda_{2,1}(\theta) + a(\theta)\lambda_{2,1}'(\theta)$$ = $a'(\theta)\lambda_{2,1}(\theta) + a(\theta)p_1'(\theta)\lambda_{3,1}(\theta)$. Since $\lambda_{4,1}(\theta) = a(\theta)\lambda_{3,1}(\theta)$, it follows that $$a'(\theta)\lambda_{2,1}(\theta)=0$$. So $a'(\theta) = 0$ and $a(\theta) = d$. Then (10) becomes (11) $$\lambda_{j+1,1}(\theta) = d\lambda_{j,1}(\theta) \qquad \qquad \text{for } j \geq 2.$$ This implies (12) $$\lambda_{j,j}(\theta) = d^{j-2}\lambda_{2,j}(\theta) \qquad \text{for } j \ge 2.$$ By (6), (13) $$\lambda_{j,2}(\theta) = d^{j-2}c(\theta)\lambda_{2,1}(\theta) \qquad \qquad \text{for } j \geq 2.$$ Now. $$p_1'(\theta) = \lambda_{1,1}'(\theta)/\lambda_{2,1}(\theta)$$, $p_1'(\theta) = \lambda_{2,1}'(\theta)/\lambda_{3,1}(\theta) = \lambda_{2,1}'(\theta)/d\lambda_{2,1}(\theta)$. So (14) $$\lambda_{1,1}(\theta) = d^{-1}\lambda_{2,1}(\theta) + k_1.$$ Similarly, (15) $$\lambda_{1,2}(\theta) = d^{-1}c(\theta)\lambda_{2,1}(\theta) + k_2.$$ Using (12), (13), (14) and (15), we find that $$egin{align} \log M_{\!\scriptscriptstyle 1}(t; heta) &= k_{\!\scriptscriptstyle 1} t + d^{-2} \! \lambda_{\!\scriptscriptstyle 2,1}\!(heta) (e^{dt}-1) \ \log M_{\!\scriptscriptstyle 2}\!(t; heta) &= k_{\!\scriptscriptstyle 2} t + d^{-2} \! c(heta) \! \lambda_{\!\scriptscriptstyle 2,1}\!(heta) (e^{dt}-1) \ , \end{aligned}$$ where $M_i(t;\theta)$ is the moment generating function corresponding to $f_i(x_i;\theta)$. This concludes the proof of Lemma 2. 3. The sum of two independent exponential-type random variables. THEOREM 1. If X_1 , X_2 are neither both normal nor both Poisson type r.v.'s, then $X_1 + X_2$ is an exponential-type r.v. if and only if $p'_1(\theta) = p'_2(\theta)$. *Proof.* If $p'_1(\theta) = p'_2(\theta)$, then if follows from (2) and (3) that $$\begin{split} \lambda_{j+1}(\theta) &= \lambda_{j+1,1}(\theta) + \lambda_{j+1,2}(\theta) \\ &= [p_1'(\theta)]^{-1} \lambda_{j,1}'(\theta) + [p_1'(\theta)]^{-1} \lambda_{j,2}'(\theta) \\ &= [p_1'(\theta)]^{-1} \lambda_j'(\theta) \; . \end{split}$$ Conversely, assume $X_1 + X_2$ is an exponential-type r.v.. Then, using (1), (2), and (3), we find that (16) $$p'(\theta)[\lambda_{j,1}(\theta) + \lambda_{j,2}(\theta)] = p'_1(\theta)\lambda_{j,1}(\theta) + p'_2(\theta)\lambda_{j,2}(\theta).$$ In particular, (17) $$p'(\theta)[\lambda_{2,1}(\theta) + \lambda_{2,2}(\theta)] = p'_1(\theta)\lambda_{2,1}(\theta) + p'_2(\theta)\lambda_{2,2}(\theta).$$ Multiplying (16) by $\lambda_{2,1}(\theta)$ and (17) by $\lambda_{j,1}(\theta)$ and then subtracting, we get (18) $$[p'(\theta) - p'_{2}(\theta)]h_{j}(\theta) \equiv 0 \qquad \text{for } j \geq 2.$$ Now, if for some $j_0 \ge 2$, $h_{j_0}(\theta) \ne 0$, then there is a subinterval, M, of (a, b) in which $h_{j_0}(\theta) \ne 0$. Then, for $\theta \in M$, $p_2'(\theta) = p'(\theta)$. By analyticity, $p_2'(\theta) = p'(\theta)$ for all $\theta \in (a, b)$. Substitution in (16) yields $p_1'(\theta) = p'(\theta)$ for $\theta \in (a, b)$. If, on the other hand, $h_j(\theta) \equiv 0$, for $j \ge 2$, the result follows from Lemmas 1 and 2 since we assumed that X_1, X_2 are neither both normal nor both Poisson type r.v.'s. It should be noted that Girshick and Savage [1] proved that if X_1 and X_2 are independent identically distributed r.v.'s such that their sum is of exponential-type, then X_1 and X_2 are also of exponential-type. The following theorem gives necessary and sufficient conditions for the sum of two Poisson-type r.v.'s to be exponential-type. THEOREM 2. If $\log M_i(t;\theta) = C_i t + A_i(\theta)[l^{b_i t} - 1]$, then $X_1 + X_2$ is an exponential-type r.v. if and only if either $b_1 = b_2$ or $p_1'(\theta) = p_2'(\theta)$. *Proof.* If $X_1 + X_2$ is an exponential-type r.v., then, as in the proof of the preceding theorem. $$[p'(\theta) - p'_2(\theta)]h_j(\theta) \equiv 0$$ for $j \ge 2$. Equivalently, Since, for $j \ge 2$, $\lambda_{j,i}(\theta) = b_i^j A_i(\theta)$, (19) becomes $$[b_1^jb_2^2-b_2^jb_1^2]A_{\scriptscriptstyle 1}(heta)A_{\scriptscriptstyle 2}(heta)=p_2'(heta)[p'(heta)]^{\scriptscriptstyle -1}[b_1^jb_2^2-b_2^jb_1^2]A_{\scriptscriptstyle 1}(heta)A_{\scriptscriptstyle 2}(heta)$$. But $A_1(\theta)A_2(\theta) > 0$, so that $$[b_1^j b_2^2 - b_2^j b_1^2] = p_2'(\theta)[p'(\theta)]^{-1}[b_1^j b_2^2 - b_2^j b_1^2]$$. Now, if $b_1^i b_2^i = b_2^i b_1^i$ for all $j \ge 2$, then $b_1^3 b_2^2 = b_2^3 b_1^2$, so that $b_1 = b_2$. On the other hand, if, for some j_0 , $b_1^{j_0} b_2^j - b_2^{j_0} b_1^2 \ne 0$, then $p_2'(\theta) = p'(\theta)$ and it follows that $p_1'(\theta) = p_2'(\theta)$. Conversely, if $p_1'(\theta) = p_2'(\theta)$, then $X_1 + X_2$ is an exponential-type r.v. since (1) is satisfied. If $b_1 = b_2$, let $$p'(\theta) = [A_1'(\theta) + A_2'(\theta)]/b_1[A_1(\theta) + A_2(\theta)]$$. It is easy to see that (1) is again satisfied. The author wishes to thank William L. Harkness for his help in the preparation of this paper. #### REFERENCES - 1. M. Girshick and L. Savage, Bayes and minimax estimate for quadratic loss functions, Second Berkeley Symposium on Probability and Statistics, University of California Press, Berkeley, 1951, 67-68. - 2. E. L. Lehmann, Testing Statistical Hypotheses, John Wiley, New York, 1959. - 3. G. P. Patil, A characterization of the exponential-type distribution, Biometrika 50 (1963), 205-207. Received August 17, 1964, and in revised form February 26, 1965. BUCKNELL UNIVERSITY #### PACIFIC JOURNAL OF MATHEMATICS #### **EDITORS** H. SAMELSON Stanford University Stanford, California R. M. BLUMENTHAL University of Washington Seattle, Washington 98105 *J. DUGUNDJI University of Southern California Los Angeles, California 90007 RICHARD ARENS University of California Los Angeles, California 90024 #### ASSOCIATE EDITORS E. F. BECKENBACH B. H. NEUMANN F. Wolf K. Yosida #### SUPPORTING INSTITUTIONS UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION Printed in Japan by International Academic Printing Co., Ltd., Tokyo Japan #### **Pacific Journal of Mathematics** Vol. 18, No. 1 March, 1966 | Edward Joseph Barbeau, Semi-algebras that are lower semi-lattices | 1 | |---|-----| | Steven Fredrick Bauman, The Klein group as an automorphism group | | | without fixed point | 9 | | Homer Franklin Bechtell, Jr., Frattini subgroups and Φ-central groups | 15 | | Edward Kenneth Blum, A convergent gradient procedure in prehilbert | | | spaces | 25 | | Edward Martin Bolger, The sum of two independent exponential-type random variables | 31 | | David Wilson Bressler and A. P. Morse, <i>Images of measurable sets</i> | 37 | | Dennison Robert Brown and J. G. LaTorre, A characterization of uniquely | | | divisible commutative semigroups | 57 | | Selwyn Ross Caradus, Operators of Riesz type | 61 | | Jeffrey Davis and Isidore Isaac Hirschman, Jr., Toeplitz forms and | | | ultraspherical polynomials | 73 | | Lorraine L. Foster, On the characteristic roots of the product of certain rational integral matrices of order two | 97 | | Alfred Gray and S. M. Shah, Asymptotic values of a holomorphic function with respect to its maximum term | 111 | | Sidney (Denny) L. Gulick, Commutativity and ideals in the biduals of topological algebras | 121 | | G. J. Kurowski, Further results in the theory of monodiffric functions | 139 | | Lawrence S. Levy, Commutative rings whose homomorphic images are | 137 | | self-injective | 149 | | Calvin T. Long, On real numbers having normality of order k | 155 | | Bertram Mond, An inequality for operators in a Hilbert space | 161 | | John William Neuberger, <i>The lack of self-adjointness in three-point</i> | 101 | | boundary value problems | 165 | | C. A. Persinger, Subsets of n-books in E^3 | 169 | | Oscar S. Rothaus and John Griggs Thompson, <i>A combinatorial problem in</i> | | | the symmetric group | 175 | | Rodolfo DeSapio, Unknotting spheres via Smale | 179 | | James E. Shockley, On the functional equation | | | $F(mn)F((m, n)) = F(m)F(n)f((m, n))\dots$ | 185 | | Kenneth Edward Whipple, Cauchy sequences in Moore spaces | 191 |