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For a finitely additive and countably multiplicative family
H, Measurable H is the family of all sets which are
measurable by every Carathéodory outer measure by which the
members of H are measurable and complements of members
of H are approximable from within, A relation contained
in a topological product space is subvalent, if for some
countable ordinal «, each horizontal section of the relation
has an empty derived set of order a. A topological space
is Borelcompact if it and the difference of any two of its
closed compact subsets are countable unions of closed compact
sets,

It is shown that if X and Y are Borelcompact, Hausdorff
spaces with countable bases and & is an analytic and subvalent
subset of the cartesian product of X with Y, then the direct
R-image of A is Measurable $(Y) whenever A is Measurable
FX). (F(X) is the family of closed subsets of X,) If X and
Y are complete, separable, metric spaces and R is an analytic
and subvalent subset of X X Y, the same conclusion can be
drawn,

In a topological setting, the notion of measurability employed
(Definitions 3.4.7 and 3.4.8) comprehends measurability by every
Carathéodory outer measure by which closed sets are measurable and
open sets can be approximated from within, More particularly if %
is the family of all real closed sets, then (3.4.8) Measurable §§ is such
a family that all real analytic sets belong to it and its members are
Lebesgue measurable.

Because a topological setting sufficient for the current theory of
analytic sets is required, the spaces concerned are either Borelcompact
(Definition 4.13) Hausdorff spaces satisfying the second axiom of
countability or complete, separable, metric spaces. Under these res-
trictions Souslin sets (Definition 3.2) and analytic sets (Definition 3.3)
are the same, and a relation which is both Souslin and subvalent is
the union of a countable family of relations which preserve measura-

bility. This property of the component relations is obtained in
Theorems 5.13 and 5.14. The decomposition of a subvalent relation
(Theorem 7.6) is described by a transfinite operation of extraction
(Definition 6.1) which is related to the familiar transfinite set deriva-
tion in topological spaces. The results announced in the introductory
passage are contained in Theorems 8.3 and 8.4.
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2. Notations.
2.1. {4} is the set whose sole member is A.

2.2, 0A is the union of the members of A; 'i.e.,
oA = Etft e x for some z e A].

2.3. A~ B is the set of points in A which are not in B.
2.4, A X B is the cartesian product of 4 with B,
If R is a relation (a set of ordered pairs) then

2.5. dmnR (domain R) is the set of first coordinates of pairs of
R; i.e.,
dmnR = Ex|(x, y) € B for some y],

2.6, rngR (range R) is the set of second coordinates of pairs of
R;i.e.,
rngR = Ey|(x, y) € R for some x].

If R is a relation and A is a set, then

2.7. +«RA is the direct R-image of A; i.e.,
+RA = Ey[(x,y)e R for some x¢e A],

2.8. *RA is the counter R-image of A4; i.e.,
*RA = Ex[(x, y) € R for some ye 4],

2.9. R| A is the restriction of R to A4; i.e.,
R| A = E(, y)[(x,y) € R for some x¢ A].

2.10. @ is the set of ordinals.

2.11, 2 is the set of countable ordinals; i.e.,
2 is the least noncountable ordinal,

2.12, w is the set of finite ordinals; i.e.,
w is the least denumerable ordinal,

2.13. 0 is the least ordinal and the empty set.
2.14. 7 is the successor of n; i.e., # = nU{n}.
Thus if new, # = Em[me® and 0 < m < n].

2.15. S is the set of all sequences of natural numbers; i.e.,
S is the set of all funections on @ to w.

2.16. S’ is the set of all functions on 7% to ®.

If H is a family of sets, then
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2.17. H, = FA[A = U,e.B, for some sequence B of sets in H],
2.18. H; = EA[A = N,e.B, for some sequence B of sets in H],
2.19. H,; = (H,)s,

2.20, H. = FAJA = cH ~ B for some Be H].

3. Borel, Souslin, analytic and measurable sets.

3.1. DEFINITIONS. The Borel families.

3.1.1. Borelian H is the smallest family which contains H and
is closed to countable, nonvacuous, union and intersection.

3.1.2. Borel ring H is the smallest family which contains H and
is closed to countable union and set difference.

3.1.3. Borel field H is the smallest family which contains H and
is closed to countable (including vacuous) union and complementation
with respect to oH.

3.2. DEFINITION. Souslin sets. Souslin H is the family of all

sets A such that
A=U Nh(s|n)

SES n€w

for some function # on U,e.S, to H.

3.3. DEFINITION. Analytic sets. Analytic in X is the family of
all sets A such that X is a topological space and

for some a€ K; and some continuous function f on a to X, where
K’ is the family of all closed, compact sets in a topological space X'.

3.4. DEFINITIONS. Measurable sets.

3.4.1. @ measures X if and only if ¢ is such a function on the
subsets of X that

0 < p(A) whenever AC X

and

p(4) = weZK P(@)
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whenever K is such a countable family that Ac oK cC X,

3.4.2, mbl ¢ (measurable p) = EA[p measures 6 dmn ¢, A€ dmn ¢
and

P(T) = p(TNA4) + o(T ~ A)
whenever T € dmn ¢].

3.4.3. section T is the function ¥ on dmng such that, for
each A edmn o,

¥(4) = (TN 4).

3.4.4. submeasures ¢ =FE+[p measures ¢ dmn ¢ and + = section
@T for some T edmng such that o(T) < <].

3.4.5, H is internal if and only if H is closed to finite (including
vacuous) union and nonvacuous countable intersection.

3.4.6. prxnpH=FA[p measures 0 dmnop and infye gz pyc (A~ C)=0].
Thus prxn @ H consists of those sets which can be ¢-approximated
from the inside by members of H.

3.4.7. Mass H = Ep[p measures 0H, H is internal, HCmbl ¢ and
H_cC prxn yH whenever + € submeasures ¢].

3.4.8. Measurable H is the family of all sets A contained in o H
and such that A e mbl o whenever ¢ € Mass H.

4. Relations between the several families. In this section we
assemble, in a convenient form, an account of some relations between
Borel, Souslin and analytic sets in a topological setting.

Theorems 4.3, 4.4 and 4.10 are quite well known and are due to
Lusin, Sierpinski and Souslin [4, 5, 9]. Theorems 4.5, 4.6, 4.7 and
4.8 are recent results of Choquet and Sion [3, 7]. For detailed re-
ferences and some proofs the reader is referred to [2].

4.1. Norations. If X is a topological space, then

4.1.1. K(X) is the family of all closed, compact sets in X,
4.1.2. F(X) is the family of all closed sets in X,

4.1.8., &(X) is the family of all open sets in X,

4.14. K. (X) = (K(X))o.
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4.2. THEOREM. H c Borelian H C Borel ring H C Borel field HC
Measurable H.

4.3, THEOREM. Borelian H c Souslin H c Measurable H.

4.4, THEOREM. Souslin Souslin H = Borelian Souslin H =
Souslin H.

4.5, THEOREM. If X 4s a topological space, then Borelian
Analytic in X = Analytic in X.

4.6. THEOREM. If X 4s a topological space, then Souslin
K(X) c Analytic in X,

4,7, THEOREM. If X +¢s a Hausdorff space, then Analytic
in X C Souslin F(X).

4.8, THEOREM. If X 4s a Hausdorff space and Xe K(X), then
Souslin K(X) = Analytic in X = Souslin {(X).

4.9, THEOREM. If X 48 a metric space, then Borelian F(X) =
Borel ring ¥(X) = Borel field $(X).

4.10. THEOREM. If X 1is a complete, separable metric space, then
Analytic in X = Souslin §(X).

Then following theorem of Sion [8] introduces a property from
which are derived necessary and sufficient conditions for open sets to
be analytic.

4.11, THEOREM. If X is a Hausdorff space, then

A ~ Be K (X) whenever A and B belong to K(X) if and only if

AN Be K(X) whenever Ac K(X) and Be®&(X) ¢f and only if

A ~ Be Analytic in X whenever A and B belong to K(X) if
and only &f

Borelian K(X) = Borel ring K(X).

The next theorem is an immediate consequence of theorem 4.11.

4,12, THEOREM. If X is a Hausdorff space and X e K (X), then
A ~ Be K(X) whenever A and B belong to K(X) if and only if

S(X) C K(X)
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if and only if
Borelian K(X) = Borel ring K(X) = Borel field K(X).

The conclusions of Theorems 4.11 and 4.12 and their recurrence
in §8§5 and 8 motivate the following definition. The terminology is
chosen because the condition of interest is a further restriction in
kind of a sigma-compact space.

4.13. DEFINITION, X is Borelcompact if and only if X is a topologi-
cal space, Xe K, (X) and A~ Be K,(X) whenever A and B belong
to K(X).

Many theorems from here on refer to the cartesian product of a
finite number of spaces. In metric spaces the best results are as-
sociated with complete, separable spaces. Let us agree that a product
of complete, separable, metric spaces is so metrized as to be complete
and separable. In topological spaces the best results are associated
with Hausdorff spaces which are countable unions of closed compacta.
Let us agree that whenever a product of topological spaces is formed
the product space is topologized by the standard product topology. That
is, a base for the product topology for X X Y is the family of all
cartesian products of open subsets of X and Y. At hand then are
the next two well-known results,

4,14, THrEOREM. If X and Y are Hausdorff spaces, then X X ¥
is a Hausdorfl space.

4.15. THEOREM. If Xec K, (X) and Ye KA(Y), then

XxYeK(XXxY).

It is essential for our purpose that the topological product of a
finite number of Borelcompact spaces be Borelcompact. A sufficient
condition for this is given by the following modification of Theorem
3.5 in [8].

4,16, THEOREM. If X and Y are Borelcompact, Hausdorf
spaces and there s a countable base for the topology of X, then
X X Y 48 Borelcompact.

For ready reference we combine some parts of 4.12 through 4.16
with 4.3 and 4.8,
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4.17, THEOREM. If X and Y are Borelcompact, Hausdor[f spaces
and there is a countable base for the topology of X, then X X Y 4s
Borelcompact and Hausdorff, &(X X Y)cC Souslin FX X Y) and
Borel field K(X) c Souslin (X x Y).

5. Images of Souslin, analytic and measurable sets. The aim
of this section is to describe for certain relations a component which
maps measurable sets into measurable sets. This is accomplished, in
a topological setting, by Definition 5.8.1 and Theorem 5.13. Even
though a metric space is not necessarily Borelcompact, the argument
leading to Theorem 5.13 can be carried out in a setting of complete,
separable, metric spaces. Theorem 5.14 states the metric case.

The component we describe has as one feature the property of
being the inverse of a function. Theorem 5.6 gives a condition for
counter image with respect to a function to preserve measurability.

The first five theorems listed below are concerned with continuous
images and counter images of Souslin and analytic sets. They are
well known in their metric space forms. For remarks on the present
forms and other closely related results see [2, Section 5].

5.1. THEOREM. If X and Y are topological spaces, A€ Analytic
in X and f 1s a continuous function on A to Y, them ,fAe Analytic
in Y.

5.2, THEOREM. If X and Y are Hausdorff spaces, A< Souslin
K(X) and f is a continuous function on X to Y, then ,fA e Souslin
K(Y).

5.3. THEOREM. If X and Y are Hausdorff spaces, Xe K, (X),
AeSouslin F(X) and f is a continuwous function on A to Y, then
«fA € Souslin F(Y).

5.4. THEOREM. If X and Y are topological spaces, A< Souslin
H(Y) and f is a continuous function on X to Y, then *fA e Souslin

F(X).

5.5. THEOREM. If X and Y are Hausdorff spaces, Xe K (X),
Ae Analytic in Y and f is a continuous function on X to Y, then
*fA e Analytic in X.

5.6. THEOREM. If ¢ measures X, cHe H, f is a function with
dmn fc X and *facmblep whenever ac H, then *fa e mblp when-
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ever «¢c Measurable H.

Proof. Let ae Measurable H. In view of Definitions 3.4 it is
enough to show that

P(T) =z p(T N *fa) + o(T ~ *fa)

for each TCdmn ¢ with ¢(T) < oo.
Accordingly let

Tcdmn g, p(T) < o

and let 4 be the function on the subsets of ¢H such that for each
BcoH

¥(B) = (T N *fB) .

It is easy to verify that

€ Mass H .
Thus

aemblq .
Now by hypothesis

cHe H
so that
*foH e mbl p .

Consequently

P(T) = (T N *foH) + (T ~ *foH)
= Y(H) + (T ~ *foH)
= () + Yy(cH ~ a) + (T ~ *foH)
=@(T N *fa) + o(T N *flcH ~ a)) + o(T ~ *foH)
= @o(T N *fa) + p(T N *foH ~ *fa) + (T ~ *foH)
= o(T N *fa) + (T N *foH ~ *fa) U (T ~ *foH))
=o(T N *fa) + p(T ~ *fa) .

Thus *fa € mbl @ whenever a € Measurable H.
5.7. COROLLARY. If cHe H, f is a function with dmn fcC oG

and *foa e Measurable G whenever «c H, then *fac Measurable G
whenever ac Measurable H.



IMAGES OF MEASURABLE SETS 45

5.8. DEFINITIONS.

5.8.1. Singular sections., &R is the set of pairs in the relation
R such that no two different pairs have the same second coordinate.
Thus &R = E(x, y)|E is a relation, (x, %) e R and *R{y} = {«}].

5.8.2. Plural sections. PR = R ~ SR, whenever R is a relation.
5.9. THEOREM. If X and Y are Borelcompact, Hausdorff spaces

and there s a countable base for the topology of X and R e Souslin
X x Y), then PRe Souslin F(X x Y).

Proof. The hypotheses and Theorem 4.17 ensure that X X Y and
X X X X Y are Hausdorff spaces, X X Ye K (X X Y) and X X X X

YeK(XxXXY),

Let
C, = Eq[q = (x, 2',y) for some (x',y) € R and some z € X]
and
C, = Eqfq = (z, ', y) for some (%, y) <€ R and some 2'e X].

Then both C, and C, are counter images of R under (different) pro-
jection funetions, and hence by 5.4 belong to Souslin (X X X X Y).
Therefore if

C=0CnC,.
then
CeSouslinF(X x X X V).
Let
B = Eqlq = (¢, 2, y) and © #* &’ for some z,2'€ X andye Y].
Then

Be®(X x X x Y) and BeSouslin F(X X X X Y)
in accordance with 4.17. Now let
A=BnC.
Then
AcSouslinFX X X X Y).
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Finally the image of A under projection into X x Y is PR and by
5.3 belongs to Souslin F(X x Y).

5,10, COROLLARY. If X and Y are Borelcompact, Hausdorf
spaces and there is a countable base for the topology of X and
ReSouslin F(X x Y), then SR e Measurable F(X x Y).

5.11. THEOREM. If X and Y are complete, separable, metric
spaces and Re Souslin (X X Y), then PRe Souslin F(X X Y) and
SR € Measurable (X x Y).

5.12. THEOREM. If X and Y are Borelcompact, Hausdorff spaces
and there is a countable base for the topology of X, R e Souslin
FHX x Y) and AeSouslin F(X), then .SRAec Measurable F(Y).

Proof. In view of 4.17, X x Y is a Hausdorff space and
XX Ye K, (X x Y). The proof is completed in three parts.

Part I. rng R ~ rng PR = rng SE € Measurable F(Y).

Proof. The equation is clear. To see that rng SR e Measurable
F(Y) let Py be the projection function on X X Y to Y. Then

rng R = ,PyR e Souslin §(Y) ,
by hypothesis and 5.3, and
rng PR = ,P,PR e Souslin F(Y) ,
by 5.9 and 5.3, and the desired result follows with the aid of 4.3.

Part II. ,8R(AN dmnSR) = ,R(A N dmn R) N rng SR,
Proof. ©R is the inverse of a function.
Part III. If Ac Souslin §(X), then ,SRAc Measurable F(Y).

Proof. Let Py and P, be the projections functions on X x Y to
X and Y respectively. Then

dmn R = ,P;R € Souslin F(X) ,

and

A N dmn R e Souslin F(X) .
Let



IMAGES OF MEASURABLE SETS 47

D=ANdmnR) X Y.

Then, by 5.4,
D = *Pz(A N dmn R) € Souslin (X x Y) .
Thus
DN ReSouslinHFX x V).
Now
+RBANdmn R) = P, (DN R),
and so by 5.3

+R(A N dmn R) € Souslin F(Y) .
Accordingly, Parts I and II and Theorem 4.3 yield

+SR(A N dmn R) € Measurable §(Y) .
Since

+SR(4 Ndmn R) = ,6RA

the proof is complete.

5.13. THEOREM. If X and Y are Borelcompact, Hausdorff spaces
and there is a countable base for the topology of X, R e Souslin
F(X x Y) and A e Measurable F(X), then SRAc Measurable F(Y).

Proof. Let f = inverse ©R = E(y, x)[(x, y) € ©R]. Observe that f
is a function, dmn fc Y = o®(Y), rngfc X = oFX) and *fA =
+«SRA. Now application of Theorems 5.12 and 5.7 yields the desired
conclusion,

5.14. THEOREM. If X and Y are complete, separable, metric
spaces, R € Souslin F(X X Y) and Ac Measurable §(X), then ,SRAe
Measurable F(Y).

6. Extracted, derived and removed sets. In this section we
introduce three transfinite set operations which are employed later to
extend the results of § 5.

6.1. DEFINITIONS.
6.1.1. Extracted set. CRF = U ¢eS(R N G).

6.1.2. Extracted set of order a.
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For R a relation, <# a family of sets and ae€ @ let extr RZ«a
be f(a) where f is the function on @ for which

f6) = U f&) UEE~ U 1&)=

whenever Be Q.
Thus one has the inductive formulas:

extr R<#0 — CR<%

and

extrReZa =extr RZEU R ~ Uextr ReZ ) #
{Ew f€w

whenever a e Q.
The following two theorems are easily proved.

6.2. THEOREM. If acQ, then
extr RZa = U G(R ~ | extr Rz n)<#

t€a nes

6.3. THEOREM. If €@, then extr R<Za C R.

6.4. DEFINITIONS.

6.4.1. Derived set.
DXA is the set of accumulation points of A, whenever X is a
topological space and A c X,

6.4.2. Derived set of order a.
For X a topological space, Ac X and ac @ let drv XAa be fl(a)
where f is the function on @ for which

f(8) = ANDX(AN N fE)

whenever Ge Q.
Thus one has the induective formulas:

drv XA0 = ANDXA
and

drv XAa = AN DX(A N N drv XAE)
{€Ew
whenever a < Q.

6.5. DEFINITIONS.,

6.5.1. Isolated set. JX4 =4~ DXA
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6.5.2. Removed set of order a.
For X a topological space, AC X and a€ @ let rmv XA« be f(a)
where f is the function on @ for which

£8) = U 7€) USX(A ~ U 1)

whenever Be Q.
Thus one has the induective formulas:

rmv XA0 = JXA
and

rmv XAa = Y rmv XAE U JX(4 ~ eU rmv XAE)
Ew

(€

whenever a <€ @.
The following two lemmas are easily proved.

6.6. LEMMA. If X 4s a topological space, AC X and ac BeQ,
then A Ddrv XAa Ddrv XAB.
6.7. LEMMA. If X ¢s a topological space, AC X and acQ, then
rmv XAa = U IX(A ~ U rmv XAE)
w £€EN

nEw

and

rmv XAacC A .

6.8. THEOREM. If X is a topological space, Ac X and ac@Q,
then

rmv XAa = A ~ drv XA«
and

drv XAa = A ~ rmv XA« .

Proof. In view of 6.6 and 6.7 the conjuncts of the conclusion are
equivalent. Theorefore it is enough to prove

rmv XAa = A ~ drv XA« .
The proof is by induction.
Clearly
rmv XA0 = A ~ drv XA0 .
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Let Be @ and suppose that for each ne B
rmv XAp = A ~ drv XAy .
Then also for each ne B
drv XAn = A ~ rmv XAy .
The proof will be complete when the following argument is verified,

rmv XAB = J JX(4 ~ U rmv XA¢E)

n€B

= U_\gX(A N(A~ U rmv XA¢&))
€B €n
US3X(ANn NA ~ rmv XA8))

€N

SX(AN ) drv X48)

Il

n

Cgl

€L
(AN Q) drv XA¢ ~ DX(AN () drv XA49)

7€ 3=

AN Ndrv X4 ~ (AN DX(AN re'l drv X A¢)))

ne e

(AN Ndrv XA& ~ drv XAn)

=]

7

I
f

)
™|

IC mlc

ne

Wl

(AN Ndrv XAE ~ (A N drv XAp))

1=y

~ (ANdrv XAR)
= A ~ drv XAB.

C

wl

n€

There are ten steps in the argument above which are now verified
in order: (i) Lemma 6.7. (ii) Lemma 6.7. (iii) De Morgan’s Law.
(iv) The induction hypothesis. (v) Definition 6.5.1. (vi) Set theory.
(vii) Definition 6.4.2. (viii) Lemma 6.6. (ix) Because of lemma 6.6
the union telescopes. (x) Lemma 6.6.

7. Subvalent Relations., The purpose of this section is realized
in Theorem 7.6 which states that a subvalent relation (Definition 7.2)
is an extracted set of countable order with respect to a (not necessarily
countable) base for the topology of the space containing the relation.
When in the concluding section we recall the hypotheses of Theorem
5.13 and assume each topology involved has a countable base, we obtain
the result (Theorem 8.3) that a relation which is both a Souslin set
and subvalent preserves measurability. The corresponding extension
of Theorem 5.14 is stated in Theorem 8.4.

7.1. DEFINITION. Horizontal sections.
DRy is the set of pairs in the relation R which have second
coordinate y. Thus
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QRy = E(x, t)[R is a relation, (x,?)e R and ¢t = y] .

7.2. DEFINITION. Subvalent relations.
Subvalent Z is the family of all relations R such that Z is a
topological product space, R < Z and for some countable ordinal «

drv Z9Rya = 0
for each y in the second coordinate space of Z.
7.3. LEMMA. If R isa relation, rng RC B and TC R for each
Te 7, then
ORy ~ U STy =9R ~ U U 9Tt)y .

res TET LERB

Proof. Clearly, if R is a relation and Tc R for each Te. .7,
then Ure-9Ty = $0.97y. Again, if R is a relation and T C R, then
SRy ~ DTy = D(R ~ T)y. Moreover, under the hypotheses, 0.7 CR
and, for each Te. 7", T = U.es DTt. Consequently,

DRy ~T(yy STy = DRy ~ 0.7y
=9[R ~0T )y
= QR nyf T)y
= H(R ~T6Lg”léJBéth)y .

7.4. LEMMA. If Z is a topological product space, RC Z, ac@
and Y 4is the second coordinate space of Z, then

YRy ~ Urmv ZORyn = H(R ~ U U rmv ZORin)y .

neaw nEw tEY

Proof. Let
7 = ET|T = rmv ZHRyr for some necaj.
By 6.7 and 7.1
Tc R for each Te 7.

Thus 7.4 follows from 7.3.

7.5. THEOREM. If Z is a topological product space, Rc Z, #
%8 a base for the topology of Z, e Q and Y is the second coordinate

space of Z, then
U rmv Z9Rya = extr RZ «

YEY
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and

U DRy ~ drv ZOQRya) = extr RF «
YEY

Proof. In view of 6.8 the conjuncts of the conclusion are equivalent.
Therefore it is enough to prove

U rmv ZORya = extr RF « .

YEY

The proof is by induction.

It is immediate from the definition of a base for a topology that

(7.5.1) U IZORy = CR=Z .

YEY

Thus
U rmv Z9Ry0 = extr R<#0 .

YEY

Let Be @ and suppose that for each ne B
U rmv ZORyn = extr R<Z'y) .
YEY

The proof will be complete when the following argument is verified:

U rmv ZORyB
YyEY
= yg (1,[6_{B rmv ZQRyn U JIZ(DRy ~ WHZ rmv ZQRymn))

U U rmv ZORyn U yg SZ(DRy ~ }ejﬂrmv ZDyn)

ne €Y

U U rmv ZSRyn U Hy%Z@(R ~ "LEJB t%JY rmv ZORtn)y

™
=

I

€EB yEY

extr RZn U U IJZOER ~ U extr RZn)y
€ YEY n€ER
UextrRzZn U GR ~ | extr Rz ))&
neER

ne

extr RZ B .

=
™

I

=
™

I

Il

There are six steps in the argument above which are now verified
in order: (i) Definition 6.5.2. (ii) Set theory. (iii) Lemma 7.4, (iv)
The induction hypothesis. (v) (7.5.1). (vi) Definition 6.1.2.

7.6. THEOREM. If Z is a topological product space, R € Subvalent
Z and <% is a base for the topology of Z, then for some countable
ordinal a

R=extr RZ« .
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Proof. Apply 7.2 to 7.5.
8. Images of Measurable sets,

8.1. THrOREM. If Xand Y are Borelcompact, Hausdorff spaces
and there is a countable base for the topology of X, Re Souslin
KX xY), ZCOBXxY)and & is countable, @ € 2 and A e Measura-
ble F(X), then sextr R<F aAc Measurable F(Y).

The proof is in six parts.

Part I. R~ G e Souslin F(X X Y) and P(R N G) € Souslin F(X X Y)
whenever Ge .

Proof. Apply Theorems 4.17 and 5.9.
Part II. R ~ GR<# € Souslin (X X Y).

Proof. Recall Definitions 5.8 and 6.1.1 to see that
R~CGRzZ =R~ U S(RNG)

Ge

=RN (R~GUPRNG) .

Ge =

Q

§

Thus
R ~ ¥R € Souslin F(X x Y)

in accordance with Part I, since <# is countable.
Part 1II. R ~ extr ReZa e Souslin F(X x V) .

Proof. The statement holds by mathematical induction in view
of Part II, the fact that « is countable and the following formula:

R ~extr RZ« ‘
=R~ (UextrR#nUER ~ | extr RZ'1)Z)
neEw

ne®

=R~ |Jextr ReZn ~ G(R ~ |J extr Rz ) Z

nEW n€®

=RN N (R~ extr RZ7) ~ERN N (R~ extr RZN))F .
neEw

neX

Part IV. R ~ U»esextr B<Zn € Souslin F(X X Y)

Proof. R~ UyeaeXtr RZ 1N =R N [yea (R ~ extr R<Z 7)), and the
result follows from Part III because « is countable.
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Part V. ,ERcZ A e Measurable F(Y).

Proof. For any set 4, \GRZ A = Uses +«SRNGA.
Hence the result follows from 5.13 because <% is countable.

Part VI. .extr R<ZaAc Measurable F(Y).

Proof. From 6.2
extrRezZa = |J (R ~ U extr RZ' )7
@ nes

f€Ea

and by part IV
R~ Jextr RZneSouslinF(X X Y).

nes

The desired result now follows from Part V.

8.2, THEOREM. If X and Y are complete, separable, metric
spaces, Re Souslin (X X Y), &Z cSX x Y) and <& is countable,
acf and Aec Measurable F(X), then .extr R<ZaAc Measurable

3(Y).

8.3. THEOREM. If X and Y are Borelcompact, Hausdorff spaces,
there is a countable base for the topology of X X Y and R e Souslin
H(X x Y) N Subvalent (X X Y), then ,RAc Measurable F(Y) when-
ever A Measurable $(X).

Proof. There are countable bases for the topologies of X and Y
separately, hence the theorem follows from 7.6 and 8.1.

8.4. THEOREM. If X and Y are complete separable metric spaces
and R e Souslin F(X x Y) N Subvalent (X x Y), then RA e Measura-
ble (YY) whenever A e Measurable $(X).

Proof. Theorems 7.6 and 8.2,

8.5. REMARKS. Let
Zero Measurable H be the family of all sets A such that

p(4) =0

for each ¢ which measures ¢H and for which HC mbl ¢, p(cH) < oo
and ¢(B) =0 whenever B is a countable subset of cH.

A.S. Besicoviteh [1] has shown that for X a complete, separable,
metric space there exist noncountable sets in Zero Measurable F(X).
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Consequently the following extension of Theorem 8.4 is of some
interest.

THEOREM. If X and Y are complete, separable, metric spaces,
RecSouslin (X x Y) and (R~ U,ezDRy) € Subvalent (X X Y) for
some H e Zero Measurable F(Y), then ,RA e Measurable §(Y) when-~
ever Ac Measurable $(X).

8.6. REMARKS. M. Sion [6] has proved several theorems concerning
images of measurable sets. The following theorem is representative
of his results:

THEOREM. If X and Y are complete, separable, metric spaces,
f is a continuous function on X to Y and Eylycrng f and *fly} s
not countable] € Zero Measurable F(Y), then .fAc Measurable F(Y)
whenever A c Measurable F(X).
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