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Let (S, +) be a commutative semigroup. If, for each
z €S, and for each positive integer 7, there exists an (unique)
element ¥ of S such that x=ny, then S is (uniquely) divisible.
In this note we present a more or less intrinsic characterization
of uniquely divisible commutative semigroups and remark on
a special sub-class of these semigroups in which it is possible
to discern the fine structure of the addition,

2. The characterization. Let P represent the additive semigroup
of positive rational numbers. By a cone of a rational vector space
we mean a convex subset C such that PCcC and —PCNC=0. A
commutative semigroup is separative if 20 = a + b = 2b implies a = b
for any a,be S. Let L be the maximal (lower) semilattice homomorphic
image of S, and let kA be the natural map of S onto L. For ec L,
let h7'(e) = S,. The Hewitt-Zuckerman theorem [3; or 1, Th. 4.18]
states that, if S is separative, then each S, is cancellative, and S is
isomorphically embeddable in a semilattice of groups, {V,} in such a
way that each V, is the difference group of S,, and the semilattice is
isomorphic to L.

Since an uniquely divisible commutative semigroup is clearly sepa-
rative, we have immediately that any such entity is isomorphic to a
divisible subsemigroup of a semilattice of divisible groups. Indeed,
each V, must be uniquely divisible, and hence a rational vector space
(see [4], for example). Furthermore, since each S, is cancellative, it
follows from Hancock’s theorem [2, Th. 7] that each S, is the direct
sum of a rational vector space and a cone of a rational vector space.
We have now:

THEOREM 1. Let S be an uniquely divisible commutative semi-
group. Then S is a semilattice of subsemigroups S,, each of which
18 the direct sum of a rational vector space and a cone of a rational
vector space. Furthermore, the addition tn S 4s determined by
semigroup homomorphisms between these subsemigroups which are
restrictions of homomorphisms (linear maps) between their difference
groups.

3. A special case. We now restrict our attention to the situ-
ation in which, for each ec L, S, = P. In this case, any x, € S, satisfies
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Px, = S,. By x, we shall mean an element of S,.

LEMMA 1. Lete,feL,e < f; let x, + x; =rx,,r€P. Thenr =1,
and for s,te P, sx, + tx; = [s + t(r — 1)]x..

Proof. Suppose r <1 and let z =z, + (1/(1 — 7))x;. Then

z:[(xe+xf)+(1—/’;7'>xf]:[rxe+(117')%]:%'

Hence, » = 1, which is a contradiction.
Now, consider S as embedded in a semilattice of rational vector
spaces as in the proof of Theorem 1. We have

sz, + tx, = (sx, + 0,) + ta,
= sz, + (0, + txy)
= sw, + 40, + ;)
= sz, + t([r — 1]x,)
= (s + t[r — 1)), .

The proof is now complete,

LEMMA 2. Let e, f,ge L, e £ f<g9. Suppose x,+ &; = ax,, ¢, +
x,=bx,, s+, =cxsa, b ceP. If any two of a,b,c equal 2, then
a=b=c=2,

Proof. Note [a+(b—1)]z, =ax,+2,=(x,+xs)+ 2, =2, +(x,+2,)=
2, + cxy = [1 + ¢(a — 1)]x,. By the uniqueness of roots, ¢ + b6 — 1 =
1 + ¢(a — 1), and proof is complete.

LemmA 3. Let e, feL. If x, + %, = 25 + ©,; = 22,7, then x, +
Ty = 2xef-

Proof. Let x,+ x,=ax,;. Then 3x,,=u,;+ (x.,+2,)=22,;+ 2z, =
(s + 25) + 2. = 1 + a)x,;. Hence a = 2,

THEOREM 2, Let S be an uniquely divisible commutative semi-
group such that x +y + vy, all v,y S. Then S= P x L.

Proof. FixeecL,x,€8,. For each fe L, choose z;€ S, such that:
(1) z,+x, =2, if f=<Zee,
(2) x5+ .5 = 2w,; otherwise.

Lemma 1 assures the availability of such elements; there is no
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ambiguity involved provided (1) is accomplished before (2). Fix f,ge L;
we shall show x4+ z;, =, + ;, = 2¢;,. To this end, note that
x, + ®.; = 2x,; and @, + %5, = 22,7, by (1) above. Hence, by Lemma
2, @, + X,z = 22,5, Since x, + 2, = x,;,, we have x, 4 2x., = 3x,4;
by cancellation in S,;, it follows that z, + x,, = 2x,,. By applying
Lemma 2 again, we have x4+ x,;, = 22,7, By an argument identical to
the one involving f and ef above, x;, + x,;, = 22,5, Finally, applying
Lemma 2 for the final time, we have z;+ x;, = 2x;. Similarly,
x, + x5, = 2;,; by Lemma 3 it follows that z; + z, = 2x,,. Finally,
if, say s=t, then sx,+tx, = t(x,+ x,) + (s —t)x, = 2tx,, + (s — )2, =
(s + t)xs, by Lemma 1. The function ¢: S— P x L defined by ¢(rz;) =
(r, f) is now clearly an isomorphism,

Next, let L be any semilattice, and let ¢ be a homomorphism of
L onto a chain B, For each B8eB, let Lg = ¢ %(B8). For each B, let
Sg=P X Lg, and let S = U{Ss: B€ B}. Define an addition in S by

(r + s, ef) if e, fe Ly,
(rye) + (s, f) = {(r,ef) if ee Ly, fe L, 8<7,
(s,ef) if ec Lg, fe L, v < B.

With this addition, S is an uniquely divisible commutative semigroup
with maximal semilattice image L and with each S, = P. The class
of semigroups thus defined will be referred to as being of type .

THEOREM 3. Let S be an uniquely divisible commutative semi-
group such that each S, is isomorphic to P. Then S is tsomorphic
to a semigroup of type & .

Proof. Define a relation ~ on S by 2 ~y if and only if x +
(x+y)#=x+y+y+(@+y). To check transitivity, let x ~y, y ~ 2.
In particular, let « + (x + y) = r(z + ¥), ¥y + (y + 2) = s(y + z), with
r,s>1. Then z+(x+y+2)=r@+y)+z=re+@r—Dy+(y+z =
re+ 1+ @r—1)s—Dly+2)#x+y+2 Hence 2+ (x-+2)+x+ =2
Similarly, z + (¢ + 2) = © + 2.

It follows by arguments similar to the above that ~ is a congru-
ence on S and that S/~ is a chain. Let j be the natural map of S
onto S/~ ; note that j factors into the composition of % and an induced
map from L to S/~. For BeS/~, j7%B) satisfies the conditions of
Theorem 2, Specifically, 77(8) = P X hj%B). Thus any zecj Y(5)
has an unique representation, x = rx,, with echj %(8), re¢ P, and z,
selected from A~ '(e) in line with the proof of Theorem 2. Suppose
B,veS/~v, B8, and let rx, € 77%(B), sx;€ 77%(v). Then x, + x,€ j7%(B)
and x, + (v, +25) =, + ;. Let x, + 2, = tx,;, By Lemma 1, z,+
x,; = ¥, since x,, x.r€77(B), x, + ., = 2x,;. Hence (1 + t)x,; = 2,5+
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(x, + x5) = (%.s + x,) + 2, = 20,5 + ©, = 22,5; hence ¢ =1. Now, if,
gsay r < s, then rx, + sz, = r(x, + z5) + (s — )% = 72,5 + (s — 7)2, =
re,; by Lemma 1. If, on the other hand, s < », then rz, + sz, =
s(x, + 25) + (r — s)x, = sx,r + (r — 8)x, = rx,; by Lemma 1. We have
now shown that the addition of S satisfies:

(r + s)x.p if gh~(e) = Fh7'(f) ,
re, + sxy = {ra,, if Jhi(e) < Jh(S) ,
sw.r it Jh7'(f) < gh7(e) .

The mapping rx, — (7, ¢) now establishes that S is isomorphic to a
semigroup of type & .

In closing, we remark that the relations used in proving Theorems
2 and 3 can be reformulated in terms of the homomorphisms guar-
anteed by Theorem 1. In Theorem 3 in particular, if e < f, then x, ~ 2 -
if and only if the addition homomorphism is an isomorphism., Further-
more, if x, and x, are not equivalent, then the addition homomorphism
is the zero mapping.

It is a pleasure to record our obligation to Professor A. H, Clifford
for several valuable comments.
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