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For a fixed v > 0 we set
2%(’) + l) Wy(n, x) —_ (_l)n(l — xz)—v+1/2 (._d__)n[(]_ — xz)n+v—l/2]
2 n dx

where (u + -;—) = F(v + % + n)/F(u + %) The W.(n,x) are

the ultraspherical polynomials of index » normalized so that
W,(n,1)=1, If

I'iv)n + v'(n + 2v)

Qds) = 1 — ap—2da,  w(n) = .
2T (» + E)r(zum!

then the W.(n, z) satisfy the orthogonality relations

S‘ W,(n, 2)Wm, 2)2,(de) = (@,(0)0n, m -
Because

W.n, 2)W.(m,2) = 3, clm, n, HYW.(k, £)w,(k)
k=0
where the c,(m,n, k) are nonnegative, the [W,(n, z)]>_, behave
rather like characters on a compact group. Consequently
certain portions of harmonic analysis, which do not extend to
orthogonal polynomials in general, have interesting analogues
for ultraspherical polynomials,
In the present paper this fact is exploited to study the
moments of the eigenvalues of generalized Toeplitz matrices
constructed using ultraspherical polynomials.

Statement of results. Since we will always work with a fixed v
we will drop the subscript and write

W.(n, ) = Wn, ), 2(d)=Qde), o.n)=aw).

For f(x)e LY(Q) we set

(1) f@) ~ 3,b(6) W4, @)
if
(2) b(5) = ()| F@) W, D) .
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For f(x)e L'(Q) let
(3)  alm,m) = [oma(m)| W, =) Wn, 2)f @)2dz) .

The Toeplitz matrix of index N associated with f, Ax[f], is defined by
Ayl f1 = [a(n, m)] n,m=0,1,.-.,N.

Let [ME,N)], k=1, .--, N+ 1, be the eigenvalues of the symmetric
matrix Ay[f]. We will show that if

(4) S16(3)| < e
then
(4) 3 Mk Ny = 7N + 1) f@) (L — 29°0(da) + o) as N— o

for s=0,1,---. We will show further that if in addition to (4) we
have

(5) B Fd < oo
then
(5) 5 Mk, Ny

_ S_ f(x)s{kizo w(n) Win, x)Z}g(dx)

— 5 bE) b, B B, 5) e Bl )

J1reendg=0

x max (0, A, A, + Ay, -+, A+ oo + A4,) + o(1)
as N-— oo,

Here
W(i,cos0) = > E(4, j)e .
A=—o
This is an analogue of a theorem on Toeplitz forms associated with

Fourier series due to Kaec [9].
Consider more generally

f(a, 75 0) = 3, bla, 5 §) W3, 2)

where b(q, r; 7) is a continuous function of q and » for 0=¢q, r=1
for each 5=0,1, --- and where
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(6) S0 <, (G =max|b(g, 7).
Let
a(n, m; N) = [omom)}]_ Wn, o) Wm, 0)f(%, %; o))

and let
(7) Ay f1= (aln, m; N) nym=0,1,---N.

Then Ay[f] is the ‘‘variable coefficient”” Toeplitz matrix of index N
associated with f(q, r; x). We will show that if (6) holds then

(6) SU Ak, N) = =N + 1)5151 Fry 73 w1 — o)~ Qdz)dr + o(N)
k=1 0J—1
which is the analogue of a theorem of Kae, Murdock, and Szego [10].
As is well known, results on moments of eigenvalues can be trans-
lated into global distribution theorems. If f(x)e L*(Q) is real then
Ay[f] is a real symmetric matrix and then Mk, N) are real. Let (4)
hold; if we set
ap(E)y=(N+1)"* > 1

AMk,N)EE

and if

a(E) = n“lg (1= )0(da)

fl=)
then it follows from (4’) that
ay—a a8 N-— o,

Here —— indicates weak convergence on (—co, o), This is of course
a very special case of a general result due to Szegso [4]. More signifi-
cantly let b(q, ;7)) = b(r,q;j) for0<r,¢<1,7=0,1, --- and let (6)
hold. Then the variable coefficient matrix (7) is Hermitian symmetric
and has real eigenvalues., If a, is the corresponding distribution
function and if

B(E) = n—ﬂ drdf |

f(ryr;cos0)ER
it follows from (6’) that

y——B as N-— oo,

2. Properties of ultraspherical polynomials. The formulas be-
low play a basic role in what follows. Let k, 7, n be nonnegative
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integers and let 20 =k +j+mn. If k+j5+n is even and if
max (k, j, n) < 0 we set

(1) ek, 3, m)

7 k!l gl n! Moo i(Mon (2V), 1
rey (c—kl@—57nN—n)! @), 2), ), c+v’

¢(k,j, n) = 0 otherwise. Here
(@), = I'(a + n)/(a) .
With this definition we have
(2) 3, ek, 4, ) W.(n, D)o,(n) = Wik, ) W.(3, 2) .

See Hsii [8]. We note that this series is only formally infinite since
¢k, g,m)=0if n >k + 5. Since W (n,1) =1 we have

- ® 35 eull, 4, m,(n) = 1.

Because v > 0 will be fixed we now drop the subsecript and write
ek, 7, n) = c(k, 3, n), ete. From (2) we see that

S_ W(n, ) Wim, ) Wk, 2)2(de) = e(n, m, k) .
Hence
|, W, 2) W, 2) Wik, ) Wi, ©)0(da)

= 1[5 cm, . o Wi, o [, 0y Wi, a)0)
= 3 clm, m, (d)e(, b, D) -

There is no problem interchanging the integration and summation as
the sums are actually finite, It follows that

(4) Win, 2)Wim, o) W(k, %) = 5,3, e(m, n, )o(5)e(d, k, p)oxn) W(p, 2) .

P=075=0

Repeating the above argument, we find that

(5) | WG, W, @), - W, 90(da)
= > Oc(jujzy ko)(k)e(kzy Jsy Fes)(ks) « + + (ky_2)0(Ky—sy Jory J0)

koo kg_g=

Since max_,.,<; | W(k, x) | = W(k, 1), see Erdélyi [2], page 206, we
have
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(6) Wk, x)| =1 k=01,
Let E(h, ) be defined as in § 1. Then

(7) ”wlsl (1 — &’ W27, m)dx = E(0, 27) .
—1
This is because

n“lgl (1 — o)W (2, m)de — n“lS:W(Zj, cos 6)d0

0

=[5 B, 29000} as
P

- (2n)~1g {_z EQ, Zj)e””’}dﬁ
— E(0,2)) .

Here we have used the fact that E'(k, 27) is 0 if & is odd.
We will have oceasion to use the following inequality,

(8) | w(k)*(sin 6)* W(k, cos 0) | =< ¢(v) ,

which is given in Szego [12; § 7.32].

Using asymptotic estimates for Jacobi and ultraspherical polynomials,
see Szego [12; §8.21], and adjusting for our normalization we obtain
(9) Wk, cos )

_ oL@k +v) {cos [(k + v)0 — vx/2] + (k sin 9)—10(1)}
T IOk + 2v) (2 sin 0)

for k' <0 <7 — 0k (here 0(1) is uniform in 4 and &k if 6 > 0%is
fixed) and

(10) W.(n, cos 6) = 2 r@evyr(n +v) {cos [(n + ‘u)a — vr/2]
') In + 2v) (2 sin 6)*
Yy —1) sinfn+4y—1)0 — wr/Z]}
n+v—1) (2 sin 6)***
+ 0(%"’“3/2)
for 6 fixed, 0 < 6 < 7.
We will have occasion to use the following asymptotic formula

(11) I'z+a)z+a,)---I'z+ a,)
I'z+B)M@E+ L) - I'(z+8,)

=1+ (2z)“1<§1 ad — Bi) + o(z-[z [, [P+ | B, l]> ;

as |z|— oo wherea, + a, 4+ ++o + A, =B+ B+ oo + B, Jargz| < 7.
See Erdélyi [2], page 47.
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We further note

d _ n(n + 2v) _
(12) dx Wu(n) x) - 2’) + 1 Wu+1(n 1! x) .

We conclude this section by deriving the following limit relation,

THEOREM 2a. With the notations of §1 +f k, k' and 7 are fized
integers, j = 0, then

lim o(N + k)e(N + k,j, N+ k)= Ek —k,J) .

N—oo

Proof. Let
Iy = [o(N + B)o(N + K)[""e(N + k,j, N + k') .
Then

I, = S:{(a}(N L E)PW(N + k, cos 6) sin® 6)
X {(w(N + E)W(N +FE, cos 0) sin®* 0} W(7, cos 6)d6 .
We know, see (8) and (9), that
llvl_l',IOlo {(w(N))"*W(N, cos 0) sin* § — (2/7)"* cos [(N + v)§ — 7v/2]} = 0
0<o<r

and that there is a constant e(v) such that

[(@(N))"*W(N, cos ) sin* 6 | < ¢(v) N=01,.--,0=50=m7.
Using the Lebesgue limit theorem we see that

lim I, = lim 27t
N-—co N —o0

% S:cos [(N-+ & +v)0—7v/2] cos [(N + &' +v)0 — zv/2] W(j, cos 8)dd
if the limit on the right exists. We have
| cos [(N + k + v)d — mv/2] eos [(N + k' + v)d — 7v/2]
— % cos [(k — K')0] + % cos[(@N + & + & + 2)0 — mv] .
By the Riemann-Lebesgue theorem
gﬂn—ljz cos [N + k + k' + 20)8 — 7v] W(J, cos 0)d0 = 0

while
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7r~15:cos [(k — k)01 W(4, cos 0)do = E(k — k', j) .
Finally, it is easily checked that

im [ N + k) T _
}V‘EE[w(NJrk')] =1

Combining these facts we have our desired result.
3. Two basic limit relations.

THEOREM 3a. With the notations of §1 we have
| (sin 6) kg (k) Wk, eos 6) — n(n + 1) | < A(v)(sin 6)
for o060, n=40,1,---,
Proof. Set
Su@) = 3, (k) Wik, o) .
By the Christoffel-Darboux formula, see Erdélyi [3] page 159, we get

11 rey v 'in +2v + 1) ,
S.(@) = ?22—2:4 <F(2V) ) T'(n + 1) [W)(n + 1, 2) W.(n, 2)

— Win, x)W,(n + 1, z)] .

Upon substituting (12) § 2, the above becomes

(1) S, (@) = L 2~ ( ) )2 I'(n + 2 + 1)

T2 + 1\ I'(2v) I'(n + 1)
X [(n 4+ 1)(n + 20 + D)W, .i(n, ) W,(n, 2)

—nn + 2)W, . (n — 1L, )W, (0 + 1, 2)] .

Now using the estimate (9) §2 with é = 1 we obtain
(sin 6)*S, (cos 8) = L {(m + 1) + (sin ) OL)} m— << m—nt.
T

On the other hand it follows from (8) § 2 that
(sin 6)*S, (cos 8) = O(n) 0oso=sm.

Combining these results we obtain the desired inequality.

COROLLARY 3b. Under the same assumptions
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lim S |71 — %)~ — (N + 1)~ g; w () Wk, o) | 2(dz) = 0 .

N-—ooo J—1

Proof. This follows from the above together with the relations
n-f 1 — o) 2(da) = 1,
—1
(2) g (N + 1) kf; (k) Wik, z)°Q(dw) = 1 .
—1 =0 .

This result implies that if fe L=[—1, 1] then

| {2 0w, or}@e.dn = L] @ — e f@)ds + ofm)
—1 k=0 T —1

as n— o, The following gives a more precise evaluation, but for a
slightly more restricted class of functions f.

THEOREM 3c. Let f(2) be bounded for —1=2x2=1 and let
[FQ) = f(@)]A — )% and [ f(x) — f(—D)]A + x)7*'* be integrable. Then

| {2 0w, 2rfr@e.an)

1
—1

_n +1 Sl f(oc)(l . 962)—1/2d:x,' + 2y — 131 f(:)(;)(l _ xz)—llzdx
T —1 o —1
— 2L + A=D1+ o)
as n— oo,
Proof. Let

@) = L@ + F(—o)] — —;—[f(l) + f(=1)].

A simple even-odd argument together with (2) shows that, using the
notation of Theorem 3a,

[ S@r@ed = | s.@h@ed + 2EL 7w + £(-1)].

It is therefore sufficient to determine the asymptotic behavior of

Sl_ls,,(x) () 2(da) = S (sin 6)*S, (cos 6)f, (cos )d6 .

We will show that as n— «
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(3) SO (sin 0)*S, (cos 0)f, (cos 0)d0

_ _71;_ [(n +y+ 2_ 1] S f: (cos 0)d0 + o(1) .

Let us assume for the moment that (3) has been demonstrated. Then

S;Sn(x)f(w)g(dx)
= %[ +1 _{_21) l]g Ffi@)( xz)~1/zdx +% + 1[.][(1) +F(—1)]+ o(1) ,
— -}t—[(n +1) + 21’; 1]S {f(@) — ; [£(1) + F(—1)P(I — 2°)dw
+ 215 + D]+ o)
Y — 1!

S_ F@L =y tdo + ZA e - ards

T

2 L r ) 4 A=D1+ oD)

as desired. It thus remains only to demonstrate (3). Our assumptions
imply that

(4) gl | /i (eos 8) | sin™2 0dO < oo ,
We assert that, if 0 < 0 <,

(5) lim {(sm 0)>S, (cos 0)

P00

__1_[(n+1)+2u—1+sm(2n+2)f+1)0—v75]}:0.
T 2 . 28in0

It is evident that Theorem 3a, (4) and (5) together imply (3). Here we

use the Riemann-Lebesgue lemma in order to dispose of the term which

arises from the sin[(2n + 2v + 1)0 — vr]/28in § on the right in (5).
By (10) Section 2 we see that for ¢ fixed, 0 < ¢ < 7,

T
o [(2) I(n +v) '_ cos [(" 20— 7]
) I'(n + 2v) (2 sin 0)

. Y7
w1 sin [(n +v—1)0— —2~]J P
(n+v—1) (2 sin 6)*** ’

W, (n, cos0) =
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i 1) 2%
W, (%, cos 8) = 4(2v + 1)F(2v) I'(n +v + 1)[ sin [(/n, +v+1) : ]

I'(v) F(’I’l/ 4+ 2y 4 2)|_ (2 sin )+
T
(1 + v) (2sin 0)* :

(n+v+1)a—.”_2’£]

W.(n + 1, cos0) = 2 .
(2 sin 0)*

I@Qv) I'n + v + 1) l:cos[
rey) r'm+ 2v + 1)

1 v
_yp—1) s [(n )0~ —2_]} + O(n—-%)
(n + v) (2 sin 0)"* ,

i v
r@) I+ ) [S‘“ [ 420 -]
ry) rn+ 2v + 1) (2 sin 6)***

v
oy e
(n +v—1) (2 sin 6)**

W,u(m —1,cosd) =42y + 1)

+O0m—3) .

Substituting into (1) we obtain

(sin 6)*S, (cos 0)
1 I'(n+v)I'(n+ v + 1)
T I'(n+ 1)[(n + 2v)

sin 0

I )

2(n +v) (sin 0)°
i 37 I v
oy —1) sin [(%-Jr y—1)0 —~7] sm[(n+ Y+ 1)5___2_]
2n+v—1) (sin 0)*
v . VI
. cos[(n +v—1)8 — —2—] sin [(n + v)f — 7]
sin 6
vr v
(v + 1) cos[(n +v—1)4 ~7] cos[(n +y4+1)0 — ~é_]
2mn+v—1) (sin 6)*

oD
- ;((:b + i; (sin 0)° 2 } + O(n="?) .
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Simplification gives

(sin 0)*S, (cos 0)
_1I'n+v)['(n+v+1) . 1
1 I'(n+ )I'(n + 2v) [(n+1)+u .‘ZjL

+ 0@~

sin|(2n + 2v +1)0—v7r]]
2sin g

Now, from (11) Section 2,

1
I'(n + 1)I"(n + 2v) + n+1

I'm+V)I'n+v+1) y — v? + O,

and hence, if 0< 0 <,

(sin 0) S, (cos 0) = - [(n y 421 sinl@n+ 2+ 1)F — ”’ﬂ]
T 2 28in 0

+ O

where the O(n*) depends upon 6. Our proof is now complete.

4. First order approximation of moments. As in §1 let

(1) f@) = 35, b(0) W, =)
where
(2) S 1) < .

Since |W(j,x2)| =1 by (6) of §2 it follows that the series defining
f(x) converges absolutely and uniformly for —1 <« <1 so that f(x)
is a continuous function on —1 < <1, Let

(3)  aln,m) = o), o Won, 2) W, 0)f @)0(d)

and let {\Mk,N)}, k=1,2, .-+, N+ 1 be the eigenvalues of the Toe-
plitz matrix A,|f] = la(n, m)], n,m =0,1,.--, N,

THEOREM 4a. Under the above assumptions

(4) iz; Ok, N))* = /(N + 1)§1_1(f(x))s(1 — #)~"de + o(N)
as N — oo,

for s=20,1, ---,

Proof. Note that
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5 0, N = tr (AL D)

Substituting (1) in the definition of a(n, m) we get

an, m) = 3, b(j)e(n, 5, m)

where the c¢(n, j, m) are defined as in §2. Consequently

(5) trAdflr=__ 3 alk, kalk, k) -+ ok, k)

rvkgrteeikg

= f‘, _B(3)b(G:) -+ b(d)

X 3 ole)ell, g, ko) -+ o)k, G ) -

Epoeinrks

Since ¢(k, 7, l) vanishes unless 2max (7, k, 1) < 7 + k + [ the above sums
are all finite, Let

K, N) = | f@y{S oWk, 2) o) .

We have

oo

(6) K@ N) = | {560 Wa, of {5 0 (W, 217} 2(a) ,

b(7:) « -+ b(4.)

i=0
=0

| W, ) WG, @) - -+ Wi, 2) Wik, 2)9(d)

I
<M

DY

X
M=

0

=
-
I

I
<M

@

b(gs) « -+ b(4.)

=0

S ol)olls, i 1) -+ @)l Guy F) -

0 kg, oo kg=0

Jyoe

M=

X
131

]

Here we have used formula (5) from §2. Comparing (5) and (6) we
see that

tr (Asl /) — K(s, N) = — 3, b(4) -+ (3050, N)
Where j = (jly ) js) and )
( 7) "l”(j, N) :Q(ZNI) w(ki)c(kl, ju kz)w(kz)c(kzy jz; ks) °tc a)(lcs)c(lcs, jsy kl) .

Here Q(N) consists of all s-tuples (k,, -+, k,) for which 0 <%k, < N,
0k, £, 0=2,8,+++,s,and k, > N for at least one a =2, :--, s,

It follows from (3) of § 2 that 0 < w(k)e(k,, Ji, k) < 1. Replacing
w(k)e(ky, gy, k) by 1 in (7) and summing over 0 =k, = N, 0 =k, < oo,
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a=23,-..--,s we find that
(8) 0=v(j,N)=N+1,

On the other hand since ¢(kq, Jay Karr) = 0 if ko — kayi| > Juy @ =1,
«+,8 — 1, the fact that some k, > N implies that we may assume

N—(j1“|‘ e +js—1)§k1§N

since otherwise the summand in (7) vanishes. Repeating the argument
above gives

(9) 0=y, N)=di+ -+ +Juu.

Using (8) we see that

(10) 5 b - BN + DG N) < 5 B (6
As a consequence of (2) the sum of the series on the right here is
finite. On the other hand using (9) we have

(11) lim (N + 1)7(j, N) = 0.

The relations (10) and (11) together imply that
lim (N + 1)7{tr [A4fT'] — K(s, N)} = 0.

Finally it follows from Corollary 3b that

lim (N + 1)7K(s, N) = lim | @V + D{ S 0(0(W(E, =)} 2(do)

N—oo

=" f@ra - ayrds

and we are done,
Let f(x) be real and Riemann in integrable on [—1, 1] and let (as
in §1)
ay(E)=N+1)7" 3 1,

ME,N)EB

aB)y=r"" 3 (1 —a)de .
flz)ER
Then it follows from (4) by a standard argument, see [4], that
12) ay(E) — a(E) as N— oo,

Conversely (12) implies (4). Results like (12) hold in much greater
generality, Our excuse for the inclusion of Theorem 4a is that its
demonstration shows in a simple setting the basic idea of the present
paper,
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5. Second order approximation of moments. Let us now assume
that

(1) f@) = 3,0() W(4, @)

where
= o\
(2) M= G) <o, M= (5i@F) <.
THEOREM 5a. Under the above assumptions we have
(3) 3 Mk, Ny
k=0
= | r@{S oW, o)}ow)

— 3 bG) by S E(hy g - B, )
peds=0 byt thg=0

x max (0, hy, hy + hyy oo+, By + <<« + b)) + o)
as N— o,

for s=0,1, .-+, and where the E(h,j) are defined by

W(j, cos0) = S E(h, j)e™ .
h=—oc0

Proof. The relation (3) is exact for s = 0, 1. We therefore suppose
s = 2, As in the proof of Theorem 4a we have

(4)  t(Aslf1) — K@ N) = — 5 b(G) -+ b(@)(, N) .

.7‘1,"',.75=

Let us set hy =k, — ki, ho = ks — Fky, oo+, by, =k, — Ioy_s, hy = k, — k..
If |h,| > 7, then e(k,, 7, k) = 0 ete. so that all the terms in Q(N)
which do not give zero are included in those for which |A,.| = 7,
«=1,---,8. Moreover since k,=1Fk + h, + hy+ - + h,_, We see
that as &k, > N for some o we must have

k, 4+ max (0, hy, by + hoy ++ By + oo +R,_) >N,

Thus by a very crude estimate
N—3|h|sk=N.
a=1
Since h, + hy+ +++ +h, =0

S Thal = 35 [he [ [ hp " = 35 15 17 [ 357
“ ‘o ol
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If we replace w(k,)c(k,, j,, k,) by 1 in (7) Section 4 and if we replace
Q(N) by all (k,, --+, k,) for which

N — Zla " del”* =k, = N, 0k, <co,@=2+++,58,
wa-‘-'ﬂ

we find that

8

0= y(j, N) = 3 141" |3a "
a#p
Using
[0(5.)0(36) | 15[ 61" = —;— 10(4a) [ 15| + —;— |5(76) I | 76 |

we find that for s = 2

s

(8) 20 [0(7) e (00T 25 1Fa 796 1 = 8"MEMY™
w;éﬁ

1ttt s

Returning to (j, N) let k =k, — N. Then

'Hlf(jr N) = ZCU(]C + N)C(k + Nyjl) k + N+ hl)
X o+ N+ hy Jo, b+ N+ hy+hy)e e ca(bk+N+hy+e-+h,_,)
X C(]§+N+h1—|— e +hs—lyjsyk+N))

where the summation is extended over those indices k, h,, -+, h,_, for
which

max (0, by, by + hoy oo, By + <o + h, ),

k
k= —N.

(9)

IIV IIV
HV l]V

Note however that unless the indices k, &, - - -, h,_, satisfy the conditions

0zk=-—- Z FRIRFIIR
w#ﬁ

10
4o |he| S fay@=1,+++,8—1,

the corresponding term in the sum above well be 0. For j, ---, 7,
fixed the restriction 0 = k£ = — N becomes otiose for large N. It fol-
lows from Theorem 2a that

lim &(N + k)e(N + &, 31, N + k + ) = E(hs, 4,)

te., which implies that
limy(j, N)= >, E(h,J)--- E,J),
Now bohyaeshg
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the summation being extended over h,, ---, k, subjeet to the restriction
h+ -+« + h, = 0 and over k satisfying the first condition of (9). Thus

(1) limy(j, N)= > E(hy, ) -+ E(h, 5))
N—oo },,1»}_...+hs=()
Xmax(oyhl7h1+h2y“';h1+"'+hs—-—1)-

We have previously shown that

I CA R CAVIEA YRS AR AT Y A FA R

dpets, B
where the series on the right is convergent (its sum not exceeding

s"M;?*M;). The relations (11) and (12) together clearly give (3).
Making use of Theorem 3¢ we obtain the following more explicit result.

COROLLARY 5b. If in addition to (1) and (2) it is assumed that
[f(2) — FQOIA — ) and [ f(x) — f(—D)](z + 1)7* are integrable then
Jor s=0,1, .-

N
Sk, Ny = Y& 1§1 Flay(t — oty rde + 21
k=0 T —1 T

| 7@ —ayrda

e FOGEE GG B S AR TER

X 3 Bk, g) - Eh, 3,)

Byttt hg=0

X max (0, by, «+, by + +++ + hy) + 0(1) as N— oo .

We will now, following a method due to Kac [9], use Theorem 5a
to study the asymptotic behavior of

Dyl f1= det[AyfI1 =M1, N) --- MN + 1, N).
We define

log Gylf1 = | [log F@IA + {35 (o) (W (&, 0)7}0(da) .

Let o be any complex number satisfying |o||| fll. < 1 and let F(z) =
1 — of(x). Then

D,F] =T [1 — oMk, M),

log D,[F'] = 3 log[1 — pr(k, N1,
— o (M, NY)*

k=1 a=1 (44

= 3 T (AL 1)

b
i
A
N
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Similarly, using the notation of Section 4,

log G,F'] = | log[1 — pf@IWV + V{3 @)Wk, 2))'|2da)

=

<

= [ {S =YW 1 17{Ss wo (W, 0)7}0da) |

—1la=1 k=0

= N+ )3 2K, N) .

A=l
Thus
Dylf] | _ & =o" .
13 log{ e} = 5 =8t (4] ~ Ko, M)
It follows from (8) that
(14) [0 (Aul S — K(@, N)| = a*Me=M, az?

uniformly in N. Using (14) and (8) we see that if |o| M, <1 then

(15) lim log {%}

= =5 S W) b, S B3 - Bl )

a=1 (X I da=

X max (0, hy, by + hyy coo, by + coo + hoy) .

Consider
f(cos 6) = 2:; b(5) W(3, cos )
= 330(), 3 B(h, g)e™
= hgac(h)e""’
where

(k) = S,b(d)E(h, J) .
It follows that the right hand side of (15) is equal to

—S IO S (k) e () M (0, By hy o+ gy oo hy e Rl

1@ gt Tha=0
We have
E(h,5) = 0 ;
see [2, Vol, II, p. 175]. Since
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Wi, cos0) = 3% B(l, j)e™
it follows on setting # — 0 that
= % B,

From this one sees that if f(x) is given by (1) and if M, and M, are
finite then

Se)| < e, SleWIh]< o

It follows that as a consequence of an important combinatorial identity
discovered by Kaec in [9] and later studied by Spitzer and others (a
particularly accessible reference is [14]), the right hand side of (15)
can be written as

2 S BBy —m)n
where
log F'(cos 0) = 3 B,(n)e™ .

In these connections see [1].
We have thus shown that if |p| M, < 1 then

(16) lim ‘@%‘% — exp [% ngk(n)BA(——fn)n] :

A moments thought shows that this result can be rephrased as
follows.

THEOREM 5b. Let f(x) = S b(5)W,(4, ) satisfy conditions (1)
and (2) and suppose in addition that

150 > 316 | -
Then

i DolS] o [L 5 -
tim DL — exp[[ 2 S my -]

where

log f(cos 0) ~ 3 by(n)ei .
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It is clear that if in addition f satisfies the assumptions of Theorem
3¢ then this ean be written in the simpler form

- Dyl 1] _ YRS Cey 1a _
%vlirola GI‘le—H v [f(l) f( 1)] ( ! exp[z %’-‘lb"(%) b"( %)%]’

where

GLA1 = exp[ L tog fapt — a)ran ]

T —

It will be shown by one of us in a subsequent paper that

o

|B(0) | > >V 16(4) |

can be replaced by the weaker condition
f)+0 —1=x=1.

We thus obtain a complete analogue for Toeplitz forms associated with
ultraspherical polynomials of the best version of the strong Szego limit
theorem for (ordinary) Toeplitz forms. See |13]and |7]|. Theorem 5b
is an essential step in the demonstration of this result.

6. Matrices with variable coefficients.

LEMMA 6a. Let p(r) be continuwous on 0 < v <1. Then

lim (N -+ 1) 33 () W, m)vp(j’\?» — (L — n:“)‘”g:q)(q")dﬁ“ ,

Nooo

for each x, —1 < x < 1.

Proof. Let /A, be the measure on |0, 1] whose mass is concentrated
at the points LIN™', k=0, ---, N and for which

AN = (N + 1)y 'wlk) Wk, x)° .
Then

W+ 17 5 00 Wik, 2yo(12) = [ ) 4utdr) .

i
Let (a, ) < |0, 1]; then
Ayl(a, )} = (N + 17 >\ o(l) Wik, )
a<IkN1<h
= O[(N + Db 3, o)Wk, z)

0<fe<bN

— al{N + Da]™ /Z' w(RYW(lk, x),
Nle<aN
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Z=b—a (1l —2)" as N—> oo,

by Corollary 8b. The same relation persists if (a,b) is replaced by
(a, b], ete. Our result is an easy consequence of this.
Let

Fla, 7 w) = 30(g, 73 9) W, )

be a complex valued function defined for 0 <q, r =<1, -1 =2 <1,
We assume that the following conditions are satisfied:

A (g, r; J) is continuous for 0 <g¢q, r <1 for each j=0,1, ---;
S\0(j) = M < = where b(j) = max |b(g, 7; )] .
=0 or

Since |[W(j, )| <1 by (6), §2, A. implies that the series defining
f(q, r; x) converges absolutely and uniformly for —1 < x < 1 and hence
f(qg, r; ¥) is continuous in all variables,

We form the matrix Ay[f] = (a(n, k; N)n, k= 0,1, ---, N, where

aln, & N) = [0 Wn, o) Wik, 0f (5, 2; )0(da) .

THEOREM 6b. With the above definitions if f satisfies conditions
A. we have

lim (N + 1) tr(A,[ £T) = n—ISiIS: Fer, s 2yl — 2 edrds .

Proof. First, as is easily seen from the formulae of § 2, we have

an, I N) = Zw(k)c(lc m, g)b(l’f] J’f, )

Using this, a straightforward computation gives
(N + )7 tr(A4[ fT) = I(s, N)

where

s, N)=N+1" 5 5

J1500535=0 k1,0, kg=0

Here,

vk, J) = o(k)elky, Ji, k)wk)elks, 3o, ki) -« - o(k)elk,, 3, k) ,
k= (ku "'5ks):j: (jl: "'yjs) .
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Let

_ e (ke kYL (ks B
T N) = (N+D7 5 51 b(g ) o b 4 ol )

We wish to show that
(1) lim [X(s, N) — J(s, N)] = 0 .
We have
Iis, N) = JGs, N) = }"'j, _d(j, 5, N)

where

= v, 5 k) )

ol ) ol e

We need only consider terms for which |k, — ko | = Jae, @ =2, <++, 5,
since if this condition is violated +r(k,j) = 0. Using the uniform
continuity of b(g, r;j) for 5 =0,1, .-+ we see that

o w15) -+ ¥ ) — o i) - o )
= () - B, 5, N)

where

170, s, N)| =1,
lim7(j, s, N) =0 .
N—oo

Thus, by a now familiar argument,

|40, 5, N) | S 263) + =+ 5000, 5 NI + 17 35 il )
= 253 -+ B, 8, N) |

Taken together these facts imply (1).
We next consider

K(s) = ﬂ‘”f (r, r; )1 — 23~ drQ(dw) .
By Lemma 6a

7[*1§:f(’f', r; )1 — x)~dr = 11\}_{2 (N + 1)—1%1\7:"00)(10) Wik, x)z[j(_l]%, %; 90)]3
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for each x, —1 < < 1. Since f is bounded and since by (8) of §2
(N + 1™ 55 () Wik, o) = CR)(L — 29~
k=0

the Lebesgue convergence theorem can be applied to show that

(2) K(s) = lim K(s, N)
where
K, N)= N+ 17 5 | 7(£, £ o) ol Wik, <y(s) ,
— S S 2 k, k. . ki, k. .
= VD7 2, A b(N N’Jl) b<N v’ >“1’(k”)'

We have
| K(s, N) = Js, N) | = (N + 1) 5, (G == B39 (i, N) .

Since, see (8) and (9) of §4,
(N+1)7(j,N)=1,
lim (N + 1)7(j, N) = 0,
N—oo

it follows that

(3) lim [K(s, N) — J(s, N)] = 0.
The relations (1), (2) and (3) combined yield our theorem.

THEOREM 6¢. Let f satisfy conditions A, and let f(q,r;x) =
flr,q;2) for 0 =r,q=1, —1=<az =<1 If {\MN, k) are the (neces-
sarily real) eigenvalues of Ay(f) and if

ay(B)=(N+1)~ > 1,

Ak, N)ER

B(E) = rlgg drdd

flryricos )€
then

ady——FB as N — oo,
Proof. We first note that

(AL LfF) = 33 Mk, NY*
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From Theorem 6b we have the convergence of the moments and the
proof then follows standard lines. See [4], page 98.

For other results connected with Toeplitz matrices of the kind
considered here see [6].

7. Second order approximation in the case of variable co-
efficients. Let A,[f] = la(m,n; N)], n=20, -+, N be defined as in
§ 6. Under certain, fairly restrictive assumptions we can show that,
as N — oo,

(1) trlAy[fF]

— | 5% L5 o) oty wie, v72(do)

== 5 b 15) e b L) B By ) <o B, 5)

G dg=0

X max(oshlyhl+h2y ”‘9h1+ °cc +h’s——1)+0(1)°

This is the analogue of a theorem of Schmidt and Mejlbo [11]. Since
the demonstration of (1) is rather long and awkward it has seemed
best to us to omit it.
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