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This paper contains three theorems concerning real numbers
having normality of order k. The first theorem gives a simple
construction of a periodic decimal having normality eof order
k to base r. After introducing the notion of c-uniform
distribution modulo one, we prove in the second theorem that
o has normality of order & to base r if and only if the funec-
tion ar® is r*-uniformly distributed modulo one. In the third
theorem we show that « has normality of order % to base r
if and only if, for every integer b and every positive integer
t<k,

lim NO,m) =t
r

where N(b, n) is the number of integers x with 1 < x < n for
which

[ar®] = b(mod 7?) .

Let « be a real number, 0 < a < 1. Let » be a positive integer
greater than one and construct the ‘“decimal” representation of a to
base r. Suppose that a certain sequence of digits occurs N(n) times
among the first n digits in the representation of a. If N(n)/n tends
to a limit f as n tends to infinity, then f is called the relative
frequency with which the sequence occurs in «. If the sequence
has % digits and appears in « with relative frequency »~*, then it
is said to occur with normal frequency. If every sequence of &
digits appears in « with normal frequency, then « is said to have
normality of order k. If a has normality of order & for every
integer k =1 then it was proved by Niven and Zuckerman [7] and
later by Cassels |2] that « is a normal number as defined by Borel [1].
Borel proved that almost all real numbers are normal. We also note
that « has normality of order one if and only if it is simply normal
to base . This notion is also due to Borel.

The expression “normality of order £” is due to I. J. Good who
gave a method [5] for constructing decimals of period +* having
normality of order k for any k£ = 1. The problem was also studied by
Rees |8], de Bruijn [4] and Korobov [6] who gave a variety of methods
of constructing such decimals. In Section 2 of this paper we give yet
another construction for a periodic decimal having normality of order
k. While the method does not yield a decimal of minimum period, it
has the advantage of being extremely simple.
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In addition to the problem of constructing numbers having
normality of order %, it is of interest to ask what characteristic
properties such numbers possess. For example, D. D. Wall [9] proved
that a real number « is normal to base r if and only if the function
ar® is uniformly distributed modulo one. Wall also showed that « is
normal to base » if and only if, for every positive integer ¢ and every
integer b, [ar®] = b(mod ¢) with relative frequency 1/¢ where [ar”]
denotes the largest integer less than or equal to ar®. In Section 3
we introduce the notion of c-uniform distribution modulo one and show
that a real number « has normality of order &k if and only if ar® is
r*-uniformly distributed modulo one. We also show that a has
normality of order %k if and only if for every integer b and every
integer ¢t with 0 <t =k,

[ar¥] = b(mod r?)

with relative frequency ¢,

2. Construction of a number having normality of order k.
Perhaps the simplest example of a normal number was given by D. G.
Champernowne [3] who showed that the decimal

o = ,12345678910111213 - - -

is normal to base 10 where « is formed by writing the decimal re-
presentations of the natural numbers in order after the decimal point.
Analogously, we prove the following theorem.

THEOREM 1. Let r and k be integers with r =2 and k= 1,
Working to base r* form the periodic decimal

a=.012.-- (r¥ —1).

Written to base v, a has period kr* and normality of order k.

Proof. Let Y, denote the block a.a,---a, of the first n digits
of the representation of « to base » and let B, = b,b, - -+ b, denote an
arbitrary sequence of k digits to ‘base ». Let C; denote the ¢th digit
in the representation of « to base r*. We will also use C; to denote
the block of %k digits in the representation of a to base » which cor-
responds to the digit C; in the representation of a to base r*, Thus,
we use C; to denote 0 and also to denote the block of k zeros with
which the representation of a to base » begins. In any given instance
the intended meaning will be clear from the context.

Since the representation of « is periodie, it clearly suffices to show
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that every B, appears precisely k times starting in Y,:. We note
that B, appears precisely once starting in Y.+ as one of the C;; i.e.,
starting in Y, in a position congruent to one modulo k. The problem
is to determine how many times B, appears starting in Y.« in a
position congruent to £k — 7 + 1 for each 5 =1,2, ---, k — 1. This is
equivalent to asking how many times B, appears with the mid-point
of two adjacent Cls coming between the jth and (5 + 1)st digits of
B, for each j. And this occurs when and only when, for some 7,

C,=c¢coo-Cr;bb,--+ b,
and

CH—I - bj»i—lbj-}-ﬂ e bkd1d2 tee dj .

Case 1. Suppose that at least one of b, b, --
from r» — 1. Then, for some 7,

b; is different

v
b

Ci = bjibjio -+ bbb, + -+ b;
and
Cioy = byyibsis v e bydudy - d;

where d,d, --- d; is the successor to bb, ---b; in the sequence of j-
tuples

(1) 00 +++ 0,00 ++0L, «on, (#r — 1) e-s (r — 1),

Thus, in this case, B, does appear starting in Y.« in a position
congruent to k£ — 7 + 1 and this is the only way it can appear in this
position,

Case 2. Suppose that b, =b, = .-+ = b; = r — 1 and that at least
one of b, b;rs, +++, b, is different from zero, If d;..d;, - d; is the
predecessor of b;,,b;., -+ b, in the sequence of (k — 7)-tuples

(2) 00-+-0,00:+-0L, oo, (r —1)--c(r —1),
then, for some ¢,

Ci=d; Ao+ dpbby -+ b;
and

Ciyi =b;00;05+--0,00--.0,

Thus, in this case, B, again appears starting in Y, in a position
congruent to &k — 5 4+ 1 modulo %t and this is the only way it can
appear in this position.
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Case 3. Finally, suppose that b, = b, = --- = b; = r — 1 and that
bjs =bjyo =+ =0, =0. The only way such a B, can appear
starting in Y, in a position congruent to k¥ — j + 1 is for

bsibire by =00---0

to have a predecessor in the sequence (2). Thus, in this case, B,
cannot appear in the desired position entirely contained in Y.
However, it clearly does appear starting in a position congruent to
k—7+1 modulo £ in Y, and overlapping the mid-point between
Y..x and the next sequence of kr* digits in the representation of & to
base 7.

Therefore, for each j =1,2, ---, k, B, occurs in the representation
of a to base r starting in Y, in a position congruent to t —j + 1
modulo k precisely once. Since B, was arbitrary, it follows that each
sequence of k digits to base r appears in the representation of a to
base r equally often. Thus, @ has normality of order k& as claimed.

Since the a of the preceding theorem is simply normal to base 7¥,
it is natural to ask if normality of order k to base r is implied by
simple normality to base r*. However, since £ = .1023 is simply
normal to base 4 but does not have normality of order 2 to base 2,
this is clearly not the case.

3. Properties of numbers having normality of order k. Let
(@) = a — [a] denote the fractional part of the real number a. A real
valued funetion f(x) is said to be uniformly distributed modulo one if,
for every real A with 0 <\ <1, limn,/n = A where =, denotes the
number of values of z = 1, 2, .-+, % for which (f(x)) < M. Analogously,
for any integer ¢ > 1, we say that f(x) is c-uniformly distributed
modulo one if the preceding definition holds for all N’s which are
positive rational fractions with denominator ¢. It then follows that
f(z) is uniformly distributed modulo one if and only if it is c-uniformly
distributed modulo one for every integer ¢ > 1. We also have the
following result concerning numbers having normality of order k.

THEOREM 2. The real number a has mormality of order k to
base r if and only if the function ar® is r*-uniformly distributed
modulo one.

Proof. Let ar® be r*-uniformly distributed modulo one. Let
bb, - -+ b, denote an arbitrary sequence of digits to base r and let

E=brt+br 4+ oo +br .

It then follows that & < (ar®) < ¢ + r~* with relative frequency »*.
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But this simply says that the sequence b, --- b, appears in the
representation of & to base » with normal frequency so that « has
normality of order k.

Conversely, suppose that a has normality of order k& to base r.
Let X = br~* where b is an integer and 0 < b << »*, Then )\ can be
written in the form

AN=brTtF b s TR, 0 b, <
and (ar®) < ) if and only if
L e A I el /X S S X e LY ant
This inequality is equivalent to
O =a " e b, < bR e b, =0

and it follows that (ar®) < A if and only if a < b. Clearly there are
just b nonnegative integers a having this property and, by hypothesis,
each k-tuple corresponding to such an @ appears in the representation
of o to base » with frequency #*  Therefore, (ar®) <\ with
frequency br* = » and « is r*-uniformly distributed modulo one.

As noted above the following theorem is also analogous to a result
of Wall.

THEOREM 3. The real number o has normality of order k to
base r 1f and only 1if, for every positive tnteger t <k and every
integer b, we have [ar®] = b(mod r?) with relative frequency r—°.

Proof. There is no loss in generality in assuming that 0 < b < »%.

Suppose first that « has normality of order k& to base ». Then
ar~t also has normality of order k. Therefore, by Theorem 2, ar®*
is r*-uniformly distributed modulo one and it follows that

brt < (ar™™) < (b + D)t

with relative frequency ! = »*"'r—*, Thus, there exist positive
integers n, with relative frequency ¢ such that

n, + brt < art<n, + (b -+ Lr?
or, equivalently, such that
nrt +b=ar*<<muyt+b+1,
But this says that

[ar®] = b(mod r~*)
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with relative frequency ¢,
To prove the converse, we simply reverse the preceding argument
reading k for t at each step.
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