Pacific Journal of Mathematics

THE LACK OF SELF-ADJOINTNESS IN THREE-POINT BOUNDARY VALUE PROBLEMS

JOHN WILLIAM NEUBERGER

Vol. 18, No. 1 March 1966

THE LACK OF SELF-ADJOINTNESS IN THREE-POINT BOUNDARY VALUE PROBLEMS

J. W. NEUBERGER

Suppose that a < c < b, $C_{[a,b]}$ is the set of all real-valued continuous functions on [a,b], each of p and q is in $C_{[a,b]}$, p(x) > 0 for all x in [a,b] and each of P, Q and S is a real 2×2 matrix. The assumption is made that the only member f of $C_{[a,b]}$ so that (pf')' - qf = 0 and

$$(\varDelta) \qquad P \begin{bmatrix} f(a) \\ p(a)f'(a) \end{bmatrix} + Q \begin{bmatrix} f(c) \\ p(c)f'(c) \end{bmatrix} + S \begin{bmatrix} f(b) \\ p(b)f'(b) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

is the zero function. It follows that there is a real-valued continuous function K_{12} on $[a,b] \times [a,b]$ such that if g is in $C_{[a,b]}$, then the only element f of $C_{[a,b]}$ so that (pf')' - qf = g and (Δ) holds is given by

$$f(x) = \int_a^b K_{12}(x,t)g(t)dt$$
 for all x in $[a,b]$.

In this note it is shown that if in addition it is specified that Q is not the zero 2×2 matrix, then K_{12} is not symmetric, i.e., it is not true that $K_{12}(x,t) = K_{12}(t,x)$ for all x,t in [a,b].

The union of (a,c) and (c,b) is denoted by R. The symbol j denotes the identity function on [a,b], i.e., j(x)=x for all x in [a,b]. If V is a function from $[a,b]\times [a,b]$ and x is in [a,b], then V(j,x) is the function h such that h(t)=V(t,x) for all t in [a,b]. If each of f and (pf')'-qf is in $C_{[a,b]}$, then (pf')'-qf is denoted by Lf.

Given an element g of $C_{[a,b]}$, one has the problem of determining a function f so that

(*)
$$\begin{cases} Lf = g \quad \text{and} \\ (\varDelta) \quad \text{holds} \; . \end{cases}$$

Denote
$$\begin{bmatrix} 0 & \int_a^t 1/p \\ \int_a^t q & 0 \end{bmatrix}$$
 by $F(t)$ and $\begin{bmatrix} 0 \\ \int_a^t g \end{bmatrix}$ by $G(t)$ for all t in $[a, b]$.

Then problem (*) may be reformulated as follows: find a function Y from [a, b] to E_2 such that

(**)
$$Y(t) = Y(x) + G(t) - G(x) + \int_{-1}^{t} dF \cdot Y$$
 for all t, x in $[a, b]$ and

$$\int_a^b dH \cdot Y = N \quad ext{where}$$
 $H(x) = egin{cases} 0 & ext{if} & x = a \ P & ext{if} & a < x \le c \ P + Q & ext{if} & c < x < b \end{cases}$

The assumption is made for the rest of this paper that only the function Y which is constant at N satisfies (**) if G is constant at N. It follows that for each continuous function G from [a, b] to E_i , (**) has exactly one solution.

Consider the function M from $[a, b] \times [a, b]$ to the set of 2×2 matricies which has the following property:

$$M(t, x) = I + \int_x^t dF \cdot M(j, x)$$
 for all t, x in $[a, b]$

where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Using Theorem B of [2], one has that the unique solution Y of (**) is given by

$$Y(t) = \int_a^b K(t,j) dG$$
 for all t in $[a,b]$ where

$$K(t,\,x) = egin{cases} -\left[\int_a^b\!dH\!\cdot\!M(j,\,t)
ight]^{\!-1}\!\!\int_x^b\!dH\!\cdot\!M(j,\,x) + M\!(t,\,x) & ext{if } a \leqq x \leqq t \ -\left[\int_a^b\!dH\!\cdot\!M(j,\,t)
ight]^{\!-1}\!\!\int_x^b\!dH\!\cdot\!M(j,\,x) & ext{if } t < x \leqq b \;. \end{cases}$$

That $\left[\int_a^b dH \cdot M(j,t)\right]^{-1}$ exists for all t in [a,b] follows from the assumption that was made above.

Some straightforward calculation gives that

$$K(t, x) = egin{cases} M(t, b) \, U(x) M(b, x) \, + \, M(t, x) & ext{if } a \leq x \leq t \ M(t, b) \, U(x) M(b, x) & ext{if } t < x \leq b \end{cases}$$

where

$$U(x) = egin{bmatrix} u_{11}(x) & u_{12}(x) \ u_{21}(x) & u_{22}(x) \end{bmatrix} = -iggl[\int_{a}^{b} dH \cdot M(j\ b) iggr]^{-1} \int_{x}^{b} dH \cdot (j,\ b) \ & ext{for all } x ext{ in } [a,\ b] \ . \end{cases}$$

Note that $Y = \begin{bmatrix} f \\ pf' \end{bmatrix}$ where f is the unique solution to (*). Denote K by $\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$. It follows that

$$f(t) = \int_a^b K_{12}(t,j)gdj$$
 for all t in $[a,b]$.

THEOREM A. If Q is not the 0-matrix (i.e., (*) is r three-point problem) then it is not true that $K_{12}(t,x)=K_{12}(x,t)$ for all x and t in R.

Proof. Denote M by $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$. From [2] one has the following identities:

$$B(t,\,x) = A(t,\,b)B(b,\,x) + B(t,\,b)D(b,\,x) \quad \text{if x and t are in $[a,\,b]$}$$

$$(\text{since $M(t,\,b)M(b,x) = M(t,\,x)$ for all $t,\,x$ in $[a,\,b]$),}$$

$$A(t,\,x)D(t,\,x) - B(t,\,x)C(t,\,x) = 1 \quad \text{(i.e., det $M(t,\,x) = 1$)} \;,$$

$$A(t,\,x) = D(x,\,t) \;,$$

$$B(t,\,x) = -B(x,\,t) \;, \quad \text{and}$$

$$C(t,\,x) = -C(x,\,t) \quad \text{if x and t are in $[a,\,b]$.}$$

Note that LA(j, x) = LB(j, x) = 0 if x is in [a, b]. Suppose that

$$K_{\scriptscriptstyle 12}(t,\,x)=K_{\scriptscriptstyle 12}(x,\,t)$$
 for all x and t in R .

If a < x < t < b, then

$$K_{12}(t, x) = [A(t, b)u_{11}(x) + B(t, b)u_{21}(x)]B(b, x) + [A(t, b)u_{12}(x) + B(t, b)u_{22}(x)]D(b, x) + B(t, x)$$

and

$$egin{aligned} K_{\scriptscriptstyle{12}}(x,\,t) &= [A(x,\,b)u_{\scriptscriptstyle{11}}(t) + B(x,\,b)u_{\scriptscriptstyle{21}}(t)]B(b,\,t) \ &+ [A(x,\,b)u_{\scriptscriptstyle{12}}(t) + B(x,\,b)u_{\scriptscriptstyle{22}}(t)]D(b,\,t) \;. \end{aligned}$$

Using the identities listed above,

$$egin{aligned} A(t,\,b)[&-u_{\scriptscriptstyle 11}(x)B(x,\,b)\,+\,u_{\scriptscriptstyle 12}(x)A(x,\,b)\,-\,B(x,\,b)]\ &+B(t,\,b)\,[-\,u_{\scriptscriptstyle 21}(x)B(x,\,b)\,+\,u_{\scriptscriptstyle 22}(x)A(x,\,b)\,+\,A(x,\,b)]\ &=A(t,\,b)[u_{\scriptscriptstyle 12}(t)A(x,\,b)\,+\,u_{\scriptscriptstyle 22}(t)B(x,\,b)]\ &-B(t,\,b)[u_{\scriptscriptstyle 11}(t)A(x,\,b)\,+\,u_{\scriptscriptstyle 21}(t)B(x,\,b)] \;. \end{aligned}$$

An examination of this expression yields the fact that it remains true if x and t are interchanged or x is set equal to t.

Denote by x a number in R. Since u_{11} , u_{11} , u_{22} , u_{22} are constant on (a,c) and (c,b) and A(j,b) and B(j,c) are independent solutions v of Lv=0, it follows that

$$-u_{11}(x)B(x,b)+u_{12}(x)A(x,b)-B(x,b)=u_{12}(t)A(x,b)+u_{22}(t)B(x,b)$$

and

$$-u_{21}(x)B(x, b) + u_{22}(x)A(x, b) + A(x, b) = -u_{11}(t)A(x, b) - u_{21}(t)B(x, b)$$
for all x and t in R .

Similarly, it follows that

- (i) $-u_{11}(x)-1=u_{22}(t)$,
- (ii) $u_{12}(x) = u_{12}(t)$,
- (iii) $u_{21}(x) = u_{21}(t)$ and
- (iv) $u_{22}(x) + 1 = -u_{11}(t)$ for all x and t in R.

(ii) and (iii) imply that u_{12} and u_{21} are constant on R. (i) and (iv) give the same information so that only (i) need be considered. Denote $u_{11}(c-)$ by c_1 , $u_{22}(c-)$ by c_2 , $u_{11}(c+)$ by c_3 and $u_{22}(c+)$ by c_4 . Hence (i) gives that $c_1+c_2=-1$, $c_1+c_4=-1$, $c_3+c_4=-1$ and $c_3+c_2=-1$. But these equations imply that $c_2=c_4$ and $c_1=c_3$, i.e., that u_{11} and u_{22} are constant on R. Hence, U is constant on R. If t is in (a,c) and x is in (c,b), then

$$\left[\int_a^b dH \cdot M(j,b)\right]^{-1} \int_t^x dH \cdot M(j,b) = U(x) - U(t) = 0$$

so that

$$QM(c,b) = \int_t^x dH \cdot M(j,b) = 0$$
,

i.e., Q = 0, a contradiction. Hence the theorem is established.

If n is an integer greater than 3, this theorem can be extended to n point boundary value problems. This is the case in which H is a step function with n discontinuities (with one at a and another at b). What happens when H has points of change other than discontinuities is not at all clear to this author.

REFERENCES

- 1. J. W. Neuberger, Concerning boundary value problems, Pacific J. Math. 10 (1960), 1385-1392.
- 2. H. S. Wall, Concerning continuous continued fractions and certain system of Stieltjes integral equations, Rend. Circ. Mat. Palermo II 2 (1953), 73-84.

Received February 1, 1965.

EMORY UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California

R. M. BLUMENTHAL

University of Washington Seattle, Washington 98105 *J. DUGUNDJI

University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. Yosida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo Japan

Pacific Journal of Mathematics

Vol. 18, No. 1 March, 1966

Edward Joseph Barbeau, Semi-algebras that are lower semi-lattices	1
Steven Fredrick Bauman, The Klein group as an automorphism group	
without fixed point	9
Homer Franklin Bechtell, Jr., Frattini subgroups and Φ-central groups	15
Edward Kenneth Blum, A convergent gradient procedure in prehilbert	
spaces	25
Edward Martin Bolger, The sum of two independent exponential-type	
random variables	31
David Wilson Bressler and A. P. Morse, <i>Images of measurable sets</i>	37
Dennison Robert Brown and J. G. LaTorre, A characterization of uniquely	
divisible commutative semigroups	57
Selwyn Ross Caradus, Operators of Riesz type	61
Jeffrey Davis and Isidore Isaac Hirschman, Jr., Toeplitz forms and	
ultraspherical polynomials	73
Lorraine L. Foster, On the characteristic roots of the product of certain	
rational integral matrices of order two	97
Alfred Gray and S. M. Shah, Asymptotic values of a holomorphic function	111
with respect to its maximum term	111
Sidney (Denny) L. Gulick, Commutativity and ideals in the biduals of	101
topological algebras	121
G. J. Kurowski, Further results in the theory of monodiffric functions	139
Lawrence S. Levy, Commutative rings whose homomorphic images are	149
self-injective	
Calvin T. Long, On real numbers having normality of order k	155
Bertram Mond, An inequality for operators in a Hilbert space	161
John William Neuberger, The lack of self-adjointness in three-point	165
boundary value problems	169
	109
Oscar S. Rothaus and John Griggs Thompson, <i>A combinatorial problem in the symmetric group</i>	175
	179
Rodolfo DeSapio, <i>Unknotting spheres via Smale</i>	179
James E. Snockiey, On the functional equation $F(mn)F((m, n)) = F(m)F(n)f((m, n))$	185
Kenneth Edward Whipple, Cauchy sequences in Moore spaces	191