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Suppose that a < c < b, C[α,&] is the set of all real-valued
continuous functions on [a, b], each of p and q is in C[α,δ],
p{x) > 0 for all x in [a, b] and each of P, Q and S is a real
2 x 2 matrix. The assumption is made that the only member
/ of Cίa,bl so that (pfy -qf=0 and

ί>(α)/'(α) L P(c)f'(c) 0.

is the zero function. It follows that there is a real-valued
continuous function K12 on [a, b] x [a, b] such that if g is in
C[α 6], then the only element / of Ci>,&] so that (pf')f — qf = 9
and (J) holds is given by

f(x) = \bK12(x, t)g(t)dt for all x in [α, b] .

In this note it is shown that if in addition it is specified
that Q is not the zero 2 x 2 matrix, then Kίz is not sym-
metric, i.e., it is not true that K12(x, t) = Kί2(t, x) for all x, t
in [a, b].

The union of (α, c) and (c, b) is denoted by R. The symbol j
denotes the identity function on [α, b], i.e., j(x) — x for all x in [α, 6],
If V is a function from [α, b] x [α, 6] and x is in [α, δ], then
V(j, x) is the function h such that &(£) = V(t, x) for all t in [α, 6],
If each of / and (pf')f — qf is in C[α δ], then (#>/')' — #/ is denoted
by Lf.

Given an element g of C[α,6], one has the problem of determining
a function / so that

(*)
\Lf=g and

I (Δ) holds .

Denote
) 1/

9 0
_ J α. _

by F(ί) and
0

by G(ί) for all ί in [α, 6].

Then problem (*) may be reformulated as follows: find a function
from [a, b] to £72 such that

(**) Y(t) = Y(χ) + G(t) - G(x) + ΓdF Γ for all ί, a in [α, 6]and
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The assumption is made for the rest of this paper that only the func-
tion Y which is constant at N satisfies (**) if G is constant at N. It
follows that for each continuous function G from [α, 6] to Et, (**) has
exactly one solution.

Consider the function M from [α, b] x [α, 6] to the set of 2 x 2
matricies which has the following property:

M(t, x) = I + (W.Af(i, x) for all ί, α? in [α, 6]

where ί = I Λ I Using Theorem B of [2], one has that the unique

solution Y of (**) is given by

Y(t) - [bK(t, j)dG for all t in [α, b] where
Jα

f- \ΫdH M(j, t)TYdH'M(j, x) + M(t, x) if α ^ x g ί
\ _ J LJα J J«

[ - [ j dH MU, ί )J j dH'M(j, x) iΐt<x£b.

That \ dH M(j, t) exists for all ί in [α, 6] follows from the assump-

tion that was made above.
Some straightforward calculation gives that

_ (M(t, b)U(x)M(b, x) + M(t, x) if a ^ x ^ ί

**' ~ ( Λ f ( t , 6 ) C / ( * ) i k f ( 6 , x) if t < x S b

where

= [ j ^
\UΆ(X) U22(X)] LJα J

for all x in [α, 6] .

Note that Y — •*„ where / is the unique solution to (*).

Denote K by Γ^11 ^ 1 2 Ί . It follows that
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f(t) = [*K12(t,j)gdj for all t in [a, b] .
Ja

THEOREM A. If Q is not the Q-matrix (i.e., (*) is r three-point
problem) then it is not true that K12(t, x) — K12(x, t) for all x and t
in R.

Proof. Denote M by L-, ^ . From [2] one has the following

identities:

B(t, x) = A(t, b)B(b, x) + B(t, b)D(b, x) if x and t are in [a, b]

(since M(t, b)M(b,x) = M(t, x) for all t, x in [a, b]) ,

A(t, x)D(t, x) - B(t, x)C(t, x) = l (i.e., det M(t, x) = 1) ,

A(t, x) = D(x, t) ,

B(t, x) = -B(x, t) , and

C(ί, x) — —C{x, t) if x and £ are in [α, 6] .

Note that LA(j, a?) = LB(j, OJ) = 0 if x is in [a, b].
Suppose that

K12(t, x) — K12(x, t) for all x and t in R .

If α < x < t < 6, then

Iζ2(ί, a;) - [A(t, b)un(x) + β(ί, 6)^21(^)]B(6, x)

t, b)u22(x)]D(h, x) + B(ί, x)

and

ϋΓ12(α, ί) = [A(x, b)nn(t) + β(α?, 6)%(ί)]S(δ, t)

+ [A(a?, &K2(ί) + B(x, b)u^{t)]D(b, t) .

Using the identities listed above,

A(t, b)[- un(x)B(x, b) + un(x)A(x, b) - B(x, b)]

+ B(t, b) [- u21(x)B(xy b) + u22(x)A(x, b) + A(a?, b)]

?, 6) + u22(t)B(x, 6)]

?, 6 ) ] .

An examination of this expression yields the fact that it remains true
if x and t are interchanged or x is set equal to t.

Denote by x a number in R. Since un, ulu u22, 2̂2 ^re constant on
(a, c) and (c, 6) and A(i, 6) and B(j, e) are independent solutions v of
Lv = 0, it follows that

— un(x)B(x, b) + ιc12(x)A(x, b) ~ B(x, b) = u12(t)A(x, b) + u22(t)B(x, b)
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and

- u21(x)B(x, b) + u22(x)A{x, b) + A(x, b) = -un(t)A(x, b) -un(t)B(xf b)]

for all x and t in R .

Similarly, it follows that
( i ) - un(x) - 1 = ujt),
(ii) u12(x) = u12(t),
(iii) ^(a?) = u21(t) and
(iv) ^ ( β ) + 1 = —ujit) for all as and t in i?.

(ii) and (iii) imply that uί2 and u21 are constant on i?, (i) and (iv)
give the same information so that only (i) need be considered. Denote
Mu(c —) by cu u22(c —) by c2, wu(c + ) by c3 and u22(c + ) by c4. Hence
(i) gives that cx + c2 = — 1 , c2 + c4 = — 1, c3 + c4 = —1 and cz + c2— — 1 .
But these equations imply that c2 = c4 and ct — c3, i.e., that un and
ί̂ 22 are constant on R. Hence, U is constant on R. If t is in (α, c)
and a; is in (c, 6), then

Γί Y ^ j , b) = U(x) - U(t) - 0

so that

QM(c,b) = j'dff.ΛfO', 6) = 0 ,

i.e., Q = 0, a contradiction. Hence the theorem is established.
If n is an integer greater than 3, this theorem can be extended

to n point boundary value problems. This is the case in which H is
a step function with n discontinuities (with one at a and another at
δ). What happens when H has points of change other than disconti-
nuities is not at all clear to this author.
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