Pacific Journal of Mathematics

THE LACK OF SELF-ADJOINTNESS IN THREE-POINT BOUNDARY VALUE PROBLEMS

JOHN WILLIAM NEUBERGER

Vol. 18, No. 1

March 1966

THE LACK OF SELF-ADJOINTNESS IN THREE-POINT BOUNDARY VALUE PROBLEMS

J. W. NEUBERGER

Suppose that a < c < b, $C_{[a,b]}$ is the set of all real-valued continuous functions on [a, b], each of p and q is in $C_{[a,b]}$, p(x) > 0 for all x in [a, b] and each of P, Q and S is a real 2×2 matrix. The assumption is made that the only member f of $C_{[a,b]}$ so that (pf')' - qf = 0 and

$$(\varDelta) \qquad P\begin{bmatrix} f(a) \\ p(a)f'(a) \end{bmatrix} + Q\begin{bmatrix} f(c) \\ p(c)f'(c) \end{bmatrix} + S\begin{bmatrix} f(b) \\ p(b)f'(b) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

is the zero function. It follows that there is a real-valued continuous function K_{12} on $[a, b] \times [a, b]$ such that if g is in $C_{[a,b]}$, then the only element f of $C_{[a,b]}$ so that (pf')' - qf = g and (\varDelta) holds is given by

$$f(x) = \int_a^b K_{12}(x, t)g(t)dt$$
 for all x in $[a, b]$.

In this note it is shown that if in addition it is specified that Q is not the zero 2×2 matrix, then K_{12} is not symmetric, i.e., it is not true that $K_{12}(x, t) = K_{12}(t, x)$ for all x, t in [a, b].

The union of (a, c) and (c, b) is denoted by R. The symbol j denotes the identity function on [a, b], i.e., j(x) = x for all x in [a, b]. If V is a function from $[a, b] \times [a, b]$ and x is in [a, b], then V(j, x) is the function h such that h(t) = V(t, x) for all t in [a, b]. If each of f and (pf')' - qf is in $C_{[a, b]}$, then (pf')' - qf is denoted by Lf.

Given an element g of $C_{[a,b]}$, one has the problem of determining a function f so that

(*)
$$\begin{cases} Lf = g \text{ and} \\ (\varDelta) \text{ holds.} \end{cases}$$

Denote
$$\begin{bmatrix} 0 & \int_{a}^{t} 1/p \\ \int_{a}^{t} q & 0 \end{bmatrix}$$
 by $F(t)$ and $\begin{bmatrix} 0 \\ \int_{a}^{t} g \end{bmatrix}$ by $G(t)$ for all t in $[a, b]$.

Then problem (*) may be reformulated as follows: find a function Y from [a, b] to E_2 such that

(**)
$$Y(t) = Y(x) + G(t) - G(x) + \int_x^t dF \cdot Y$$
 for all t, x in $[a, b]$ and

The assumption is made for the rest of this paper that only the function Y which is constant at N satisfies (**) if G is constant at N. It follows that for each continuous function G from [a, b] to E_i , (**) has exactly one solution.

Consider the function M from $[a, b] \times [a, b]$ to the set of 2×2 matricies which has the following property:

$$M(t, x) = I + \int_x^t dF \cdot M(j, x)$$
 for all t, x in $[a, b]$

where $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. Using Theorem B of [2], one has that the unique solution Y of (**) is given by

$$Y(t) = \int_a^b K(t,j) dG$$
 for all t in $[a, b]$ where $K(t, x) = egin{cases} -\left[\int_a^b dH \cdot M(j,t)
ight]^{-1} \int_x^b dH \cdot M(j,x) + M(t,x) & ext{if } a \leq x \leq t \ -\left[\int_a^b dH \cdot M(j,t)
ight]^{-1} \int_x^b dH \cdot M(j,x) & ext{if } t < x \leq b \end{array}.$

That $\left[\int_{a}^{b} dH \cdot M(j, t)\right]^{-1}$ exists for all t in [a, b] follows from the assumption that was made above.

Some straightforward calculation gives that

$$K(t, x) = egin{cases} M(t, b) \, U(x) M(b, x) \,+\, M(t, x) & ext{if } a \leq x \leq t \ M(t, b) \, U(x) M(b, x) & ext{if } t < x \leq b \end{cases}$$

where

$$U(x) = \begin{bmatrix} u_{11}(x) & u_{12}(x) \\ u_{21}(x) & u_{22}(x) \end{bmatrix} = -\left[\int_{a}^{b} dH \cdot M(j \ b) \right]^{-1} \int_{x}^{b} dH \cdot (j, b)$$
for all x in [a, b].

Note that $Y = \begin{bmatrix} f \\ pf' \end{bmatrix}$ where f is the unique solution to (*). Denote K by $\begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix}$. It follows that

$$f(t) = \int_a^b K_{12}(t, j)gdj$$
 for all t in $[a, b]$.

THEOREM A. If Q is not the 0-matrix (i.e., (*) is r three-point problem) then it is not true that $K_{12}(t, x) = K_{12}(x, t)$ for all x and t in R.

Proof. Denote M by $\begin{bmatrix} A & B \\ C & D \end{bmatrix}$. From [2] one has the following identities:

$$egin{aligned} B(t,\,x) &= A(t,\,b)B(b,\,x) + B(t,\,b)D(b,\,x) & ext{if } x ext{ and } t ext{ are in } [a,\,b] \ (ext{since } M(t,\,b)M(b,x) &= M(t,\,x) ext{ for all } t,\,x ext{ in } [a,\,b]) \ , \ A(t,\,x)D(t,\,x) - B(t,\,x)C(t,\,x) &= 1 & (ext{i.e., det } M(t,\,x) &= 1) \ , \end{aligned}$$

$$A(t, x) = D(t, x) - D(t, x) = 1$$
 (i.e., det $M(t, x) = 1$
 $A(t, x) = D(x, t)$,
 $B(t, x) = -B(x, t)$, and
 $C(t, x) = -C(x, t)$ if x and t are in $[a, b]$.

Note that LA(j, x) = LB(j, x) = 0 if x is in [a, b].

Suppose that

$$K_{\scriptscriptstyle 12}(t, x) = K_{\scriptscriptstyle 12}(x, t)$$
 for all x and t in R .

If a < x < t < b, then

$$egin{aligned} K_{ ext{12}}(t,\,x) &= [A(t,\,b)u_{ ext{11}}(x) + B(t,\,b)u_{ ext{21}}(x)]B(b,\,x) \ &+ [A(t,\,b)u_{ ext{12}}(x) + B(t,\,b)u_{ ext{22}}(x)]D(b,\,x) + B(t,\,x) \end{aligned}$$

and

$$egin{aligned} K_{\scriptscriptstyle 12}(x,\,t) &= [A(x,\,b)u_{\scriptscriptstyle 11}(t) + B(x,\,b)u_{\scriptscriptstyle 21}(t)]B(b,\,t) \ &+ [A(x,\,b)u_{\scriptscriptstyle 12}(t) + B(x,\,b)u_{\scriptscriptstyle 22}(t)]D(b,\,t) \ . \end{aligned}$$

Using the identities listed above,

$$egin{aligned} A(t,\,b)[&-u_{\scriptscriptstyle 11}(x)B(x,\,b)+u_{\scriptscriptstyle 12}(x)A(x,\,b)-B(x,\,b)]\ &+B(t,\,b)\left[-u_{\scriptscriptstyle 21}(x)B(x,\,b)+u_{\scriptscriptstyle 22}(x)A(x,\,b)+A(x,\,b)
ight]\ &=A(t,\,b)[u_{\scriptscriptstyle 12}(t)A(x,\,b)+u_{\scriptscriptstyle 22}(t)B(x,\,b)]\ &-B(t,\,b)[u_{\scriptscriptstyle 11}(t)A(x,\,b)+u_{\scriptscriptstyle 21}(t)B(x,\,b)]\ . \end{aligned}$$

An examination of this expression yields the fact that it remains true if x and t are interchanged or x is set equal to t.

Denote by x a number in R. Since u_{11} , u_{11} , u_{22} , u_{22} are constant on (a, c) and (c, b) and A(j, b) and B(j, c) are independent solutions v of Lv = 0, it follows that

$$-u_{11}(x)B(x, b) + u_{12}(x)A(x, b) - B(x, b) = u_{12}(t)A(x, b) + u_{22}(t)B(x, b)$$

and

$$-u_{21}(x)B(x, b) + u_{22}(x)A(x, b) + A(x, b) = -u_{11}(t)A(x, b) - u_{21}(t)B(x, b)]$$

for all x and t in R.

Similarly, it follows that

- (i) $-u_{11}(x) 1 = u_{22}(t)$,
- (ii) $u_{12}(x) = u_{12}(t)$,
- (iii) $u_{21}(x) = u_{21}(t)$ and
- (iv) $u_{22}(x) + 1 = -u_{11}(t)$ for all x and t in R.

(ii) and (iii) imply that u_{12} and u_{21} are constant on R. (i) and (iv) give the same information so that only (i) need be considered. Denote $u_{11}(c-)$ by c_1 , $u_{22}(c-)$ by c_2 , $u_{11}(c+)$ by c_3 and $u_{22}(c+)$ by c_4 . Hence (i) gives that $c_1 + c_2 = -1$, $c_1 + c_4 = -1$, $c_3 + c_4 = -1$ and $c_3 + c_2 = -1$. But these equations imply that $c_2 = c_4$ and $c_1 = c_3$, i.e., that u_{11} and u_{22} are constant on R. Hence, U is constant on R. If t is in (a, c) and x is in (c, b), then

$$\left[\int_a^b dH \cdot M(j, b)\right]^{-1} \int_t^x dH \cdot M(j, b) = U(x) - U(t) = 0$$

so that

$$\mathit{QM}(c,\,b)=\int_{t}^{x}\!\!dH\!\cdot\!M(j,\,b)=0$$
 ,

i.e., Q = 0, a contradiction. Hence the theorem is established.

If n is an integer greater than 3, this theorem can be extended to n point boundary value problems. This is the case in which H is a step function with n discontinuities (with one at a and another at b). What happens when H has points of change other than discontinuities is not at all clear to this author.

References

1. J. W. Neuberger, Concerning boundary value problems, Pacific J. Math. 10 (1960), 1385-1392.

2. H. S. Wall, Concerning continuous continued fractions and certain system of Stieltjes integral equations, Rend. Circ. Mat. Palermo II 2 (1953). 73-84.

Received February 1, 1965.

EMORY UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California

R. M. BLUMENTHAL

University of Washington Seattle, Washington 98105 *J. DUGUNDJI University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo Japan

Pacific Journal of MathematicsVol. 18, No. 1March, 1966

Edward Joseph Barbeau, <i>Semi-algebras that are lower semi-lattices</i>	1
Steven Fredrick Bauman, <i>The Klein group as an automorphism group</i> <i>without fixed point</i>	9
Homer Franklin Bechtell, Jr., <i>Frattini subgroups and</i> Φ -central groups	15
Edward Kenneth Blum, A convergent gradient procedure in prehilbert	
spaces	25
Edward Martin Bolger, The sum of two independent exponential-type	
random variables	31
David Wilson Bressler and A. P. Morse, <i>Images of measurable sets</i>	37
Dennison Robert Brown and J. G. LaTorre, A characterization of uniquely	
divisible commutative semigroups	57
Selwyn Ross Caradus, <i>Operators of Riesz type</i>	61
Jeffrey Davis and Isidore Isaac Hirschman, Jr., <i>Toeplitz forms and</i>	
ultraspherical polynomials	73
Lorraine L. Foster, On the characteristic roots of the product of certain	
rational integral matrices of order two	97
Alfred Gray and S. M. Shah, Asymptotic values of a holomorphic function	
with respect to its maximum term	111
Sidney (Denny) L. Gulick, <i>Commutativity and ideals in the biduals of</i>	121
G. I. Kurowski. Eurther results in the theory of monodiffuin functions	120
U. J. Kulowski, <i>Further results in the theory of monoallytic functions</i>	139
solf injective	140
Colvin T. Long. On weak numbers having normality of order h	149
Carvin 1. Long, On real numbers naving normality of order k	161
Le Will Nond, An inequality for operators in a Hubert space	101
John William Neuberger, The lack of self-adjointness in three-point	165
C A D is a first of the first o	103
C. A. Persinger, Subsets of n-books in E ⁹	169
Oscar S. Rothaus and John Griggs Thompson, A combinatorial problem in	175
the symmetric group	175
Rodolto DeSapio, Unknotting spheres via Smale	179
James E. Shockley, <i>On the functional equation</i>	10-
$F(mn)F((m, n)) = F(m)F(n)f((m, n))\dots$	185
Kenneth Edward Whipple, <i>Cauchy sequences in Moore spaces</i>	191