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It is shown here that a topological ^-sphere which is
embedded in Euclidean m-space Rm with a transverse field of
(m—w)«planes (in the sense of Whitehead) bounds a topological
(w+l)-disc in Rm, provided m>w+2>4 and nΦi. On the other
hand, Haefϊiger has constructed C°° differentiable embeddings
of the standard (4/c—l)-sphere S4k~L in 6/b-space R6k which are
differentiably knotted (i.e. they do not bound differentiably
embedded 4&-discs in R6k)a However, hy using a sharpened form
of the /ι-cobordism theorem of Smale it is possible to topologi-
cally unknot these spheres. This is achieved by showing that a
differentiably knotted ^-sphere in m-space Rm is so knotted
because of a single bad point (provided m > n + 2 > 4). The
topological case is then proved by first approximating the
topologically embedded ^-sphere by a differentiably embedded
homotopy w-sphere, and thus reducing it to the differentiable
case.

Differentiable or smooth will mean of class C°°. An ti-disc is a
contractible, compact, smooth ^-manifold with simply connected bounda-
ry. A pair of disc (Bm, Bn) is a pair of discs such that dBn = Bn Π dBm,
where dM denotes the boundary of a manifold M, and where Bn meets
dBm transversally. A theorem of Smale [4] asserts that an w-disc for
n ^ 6 is diffeomorphic to the standard %-disc Dn in Rn. Now let
(Dm,Dn) be the standard pair of discs.

PROPOSITION 1. A pair of discs (Bm, Bn) is diffeomorphic to the
standard pair (Dm, Dn), provided m > n + 2 > 7.

Proof. This is an easy consequence of Smale [4; Corollary 3.2].
Let φ: (Dm,Dn)-+(lntBm,IntBn) be a smooth embedding and consider
the exact homology sequence of the pair (Bn — Intφ(Dn), φ(dDn)). By
excision Hi(Bn - Int φ(Dn), φ(dDn)) ^ fli(JBn, φ(Dn)) = 0 and hence the
the inclusion φ(dDn) —>Bn — Int φ{Dn) is a homotopy equivalence. To
show that the inclusion dBn—>Bn — Intφ(Dn) is also a homotopy equiva-
lence consider the homology sequence of the pair (Bn — Intφ(Dn),dBn).
By Poincare duality

HtiB" - Int φ{D% 3B ) ** Hn-\Bn - Int φ(Dn),

and by excision

H-*(B _ lntφ(Dn), φ(dDn)) ™ H"~\Bn, φ(Dn)) .

Since Hn~ι{Bn, φ(Dn)) = 0, it follows that the inclusion dBn->Bn - lntφ{Dn)
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induces isomorphisms of homology and hence is a homotopy equivalence*
Therefore, since n > 5, [4; Corollary 3.2] implies that Bn — Int φ(Dn)
is diffeomorphic to S""1 x /.

Similarly the inclusions φ(dDm)-+Bm - lntφ(Dm) and 3Bm-+Bm -
lntφ(Dm) are homotopy equivalences and hence by [4; Corollary 3.2]
the diffeomorphism S^1 x I f& Bn — Int <p(Dw) may be extended to a
diffeomorphism S™"1 x I ^ Bm — Int φ{Dm)1 where, of course, S""1 x I
is embedded in Sm~1 x / in the natural way. By using this product
structure on (J5m — Int φ(Dm), Bn — Int φ{Dn)) it is possible to define a
diffeomorphism (Bm, i?w) ^ φ m , Dn), proving the proposition.

The following theorem is a slight generalization of the topological
unknotting of a differentiably knotted Sn in Sm for m > n + 2 > 6.
Notice that Haefliger [1] has shown that Sn differentiably knots in Sm

only if 3n + 3 ^ 2m ^ 2n + A. Recall that a homotopy n-sphere is a
closed, oriented, smooth %-manifold with the homotopy type of Sn.

THEOREM A. Any pair (Vm, Kn) of homotopy spheres, with
m > n + 2 > 6, is diffeomorphic to a pair obtained from two copies
of (Dm, Dn) by identifying boundaries together through some dif-
feomorphism (Sm~\ S*1-1) -> (Sm~\ S"-1).

REMARK. If it is assumed that Kn can be obtained by identifying
two standard w-discs along their boundaries via a diffeomorphism

theorem is true for n > 3.

Proof. The proof is simple; for n ^ 6 even simpler. If n Ξg 6,
choose an embedding φ\ (Dm, Dn) —• {Vm, Kn). By Proposition 1 the
pair (Vm - Intφ(Dm)y Kn - Intφ{Dn)) is diffeomorphic to (Dm,Dn).
(It is easy to see that (Vm - Iτιtφ(Dm), Kn - Int<pφ%) is a pair of
discs; for example, if Bn = Kn — Int φ{Dn), then by Poincare duality
HIB" - φ(dDn) K* Hn-%Bn, φ{dDn)) and by excision Rn~\Bn, φ{dDn)) ™
Bn-\Kn, φ(Dn)). Since Hn~\Kn, φ(Dn)) ™ Hn~\Kn) for i Φ n, it follows
that Bn — φ(dD%) is contractible and hence so is Bn.)

For n = 5 choose disjoint smooth embeddings φc D5-+K%i = 1, 2)
so that if5 — Int [<PI(JD5) U ^p2φ

5)] is diffeomorphic to S4 x J (this is possi-
ble because any homotopy 5-sphere is, according to Milnor, A-cobordant
to Sδ and hence, by Smale, is diffeomorphic to S5). The embeddings
cpi may be extended to smooth embeddings φt: (Dm, Dδ) —> ( F m , K5)
(i = 1, 2). Now by the previous paragraph Vm — Int ψi(Dm) is a disc
and hence by the proof of Proposition 1 the φi(dDm)(i = 1,2) are defor-
mation retracts of Vm - I n t ^ φ ^ U ^ Φ * ) ] . Therefore, by Smale [4;
Corollary 3.2] the diffeomorphism S4 x I^Kδ - Int [φ^D5) (j φ2(D5)] may
be extended to a diffeomorphism S™-1 x 1^ Vm - Int [^(jDm) U Φ 2 φ w ) ,
and the theorem then follows easily.
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Let Kn be a homotopy ̂ -sphere smoothly embeddedinSw,m>%+2>6,
and let (Sm, Sn) be the standard pair of spheres, Sn embedded in Sm by
the natural inclusion of Rn+1 in Em+1. A homeomorphism /: (Sm,Kn)—•
(Sm, Sn) of pairs, diίferentiable except possibly at a single point of Kn,
is obtained as follows: map one copy of the (Dm, Dn) of Theorem A
differentiably onto one pair of hemispheres of (Sm, Sn) and then extend
the map radially to the other copy of (Dm, Dn) via the diίfeomorphism
(Sw-1,S%-1)->(Sm-1,S^-1) of Theorem A (i.e., the cone map) giving the
diffeomorphism up to a point. Thus / unknots Kn in Sm.

COROLLARY (Hirsch). Let N be a closed tubular neighborhood of
a homotopy n-sphere Kn smoothly embedded in Sn+k. Then for n^5
and k ^ 3 there is a diffeomorphism N ρ& Sn x Dk.

The closed tubular neighborhood N is a neighborhood of Kn in
βn+k Λ^̂ ieh i s diffeomorphic to a neighborhood of the zero cross-section
in the normal bundle of Kn in Sn+k, the latter neighborhood being
the set of all vectors less than or equal to some fixed ε > 0. The
following proof replaces the combinatorial arguments of Hirsch [3] by
application of the above theorem.

Proof Take a closed tubular neighborhood of Sn in Sn+k; it is
diffeomorphic to Sn x Dk. It may be assumed that the closed normal
tube N is embedded in Sn x IntD* by the unknotting homeomorphism
/: (Sw, Kn)—>(Sm, Sn) constructed above. Moreover, K may be deformed
into Kr by a differentiate isotopy deforming N into a closed normal
tube N' of K\ where N' c Interior N and N' does not contain the
"bad point" of /. Then N is diffeomorphic to N' and N is smoothly
embedded in Sn x IntD* by /. Now from an argument similar to that
in Proposition 1 it follows that (Sn x Dk) — Intf(N') is diffeomorphic to
Sn x S^"1 x I. Consequently the boundary of f(N') may be deformed iso-
topically onto Sn x S1'"1. Since this isotopy may be extended to a differ-
entiable isotopy deforming f(N') onto Sn x Dk, the corollary is proved.

REMARK. Theorem A implies that a smoothly embedded homotopy
^-sphere Kn in Sm, where m > n + 2 > 6 is topologically unknotted.
It can be shown that the pairs (Sm, Kn) and (Sm, Sn) may be smoothly
triangulated so that the unknotting homeomorphism /: (Sw, Kn)—>(SW, Sn)
is a combinatorial equivalence. More generally, however, Zeeman [7]
has shown that a combinatorial^ embedded Sn in Sm is combinatorially
unknotted if m > n + 2. Stallings [5] proves that a locally fiat Sn in
Sm is unknotted if n + 3 ^ m ^ 5.

Let Gm_n,n be the Grassman manifold of (m — w)-planes in Rm.
If Kn is a topological ^-manifold in Rm, m > n > 0, then a field of
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(m — ri)-planes transverse to Kn (or a transverse field) is a continuous
φ: Kn —+ Gm_n,n such that φ{x) is transverse (in the sense of Whitehead
[6]) to Kn at x for every x e Kn. A topological ^-manifold K% in
Sm is said to have a transverse field if J£% has a transverse field in
gm __ {oo} as defined above, where oo e Sm — K.

THEOREM B. A topological n-sphere Kn embedded in Sm with a
transverse field unknots, provided m > n + 2 > 4 and n Φ 4.

Of course 2? follows from Stallings' result since such a Kn is
locally flat in Sm. In order to prove B it is necessary to state some
facts about transverse fields. So, suppose Kn is a topological w-manifold
in Rm with a transverse field <p: K—>Gm_n,n. The space

may be considered as the total space of the (m — ̂ )-plane bundle over
K induced by φ; the fibre over x e K is the (m — ̂ )-plane <p(#). Now
by Whitehead [6; page 157, second sentence], given a continuous map
<s: K—>R+ (R+ the positive reals), there is a Lipschitz map φ'\ K—>Gm_n>n

which is an ε-approximation to φ, and by [6; Theorem 1.3] ε may be
chosen so that φf is a transverse field (which is transversally homotopic
to φ). Hence we may assume without loss of generality that the given
transverse field φ is Lipschitz.

Define a map

by θ(%, y) — x + y. By [6; Theorem 1.5] there exists a map p: K—>R+

(R+ the positive reals) such that if

T'P = {(x,y)\(x,y)eE(φ),\y\<p(x)},

an open subset of E(φ), then θ \ T'? is a regular Lipschitz homeomorphism
of Tp onto ΘT'p. Now define the φ-projection π oί ΘTr

p onto K by

πθ(x, y) — π(x + y) = a? .

Then 99 is said to be of class C r (1 ̂  r ^ oo) if φπ is of class Cr in a
neighborhood NaθTr

9 of iΓ. In this case by [6; Theorem 3] there
exists a smooth Cr submanifold Mn of N such that π\ M: M—> Kis a
homeomorphism and the map M~-^Gm_n,n sending x into φπ(x) is a
transverse field on M.

Theorem B is a direct consequence of Theorem A (for n = 3 see
Remark after Theorem A) and the following.

PROPOSITION 2. A pair (Sm, Kn), where Kn is a closed topological
manifold in Sm with a transverse field φ: K-+Gm__n,n, is homeomorphic
to a pair (Sm, Λfn), where Mn is a smooth C°° submanifold of Sw.
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REMARK. The homeomorphism of the pairs (Sm, Kn) and (S w , Mn)
which is defined in the following proof is isotopic (homotopic through
homeomorphisms) to the identity map of Sm.

Proof. Let p: K—>R+ be as above; by [6; Theorem 1.10] φ may
be assumed to be a C°° transverse field. Now choose pQ > 0 such that
0 < Po < Inf {p(x) I x e K} and let

To' - {(a?, y) e E(φ) \\y\< ^0}, To = 0ΓO' .

Clearly TQCTI and, moreover, the map ψ: T0—>E(φ) sending x + y —»
(#, (l/(|O0 — I ?/ |))τ/) defines a homeomorphism of

o

TQ — {x + y I xe K, y e φ(x), \y\<Po} o n t o

By remarks above there exists a smooth C°° submanifold Mn of Rm

in To such that π \ M: M—>K is a homeomorphism. The homeomorphism
7Γ I M will be extended to a sur jective homeomorphism /: Sm —> Sm. The
first step is to extend π \ M to a homeomorphism π: TQ—>TQ onto T(

in the following way: the image of M under ψ: T0—*E(φ) may be
described as the set {(x, a(x)) \ x e K, a(x) e φ(x), a: K-*Rm} and so the
map β: E(φ) —• E(φ) defined by β(x, y) — (x, y — a(x)) is clearly a
homeomorphism of E(φ) onto itself. Setting π — ψ~λβψ gives the
desired extension of π \ M.

It is a tedious but straightforward verification that for (x + y) e To,
I π(x + y) — (# + 2/) I ~~* 0 uniformly for all # as 12/1 —* /O0

 a n d hence by
defining /: Sm —> S w to be, for each s in Sm,

/ ( S ) = = U (if « ί Γ 0 ) ,

it follows that / is a homeomorphism of Sm onto Sm sending M onto K.
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