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An Associative Element of a quasigroup is defined to be an
element a with the property that x(yz) = a implies (xy)z = a.

It is then shown that
( i ) a quasigroup which contains an associative element

is a loop,
(ii) if a loop contains an associative element then the

nuclei coincide,
(iii) if a loop is weak inverse then the set of associative

elements coincides with the nucleus,
(iv) if a loop is not weak inverse then no associative

element is a member of the nucleus and the product of any
two associative elements is not associative.

In [2] Osborn defines a Weak Inverse Loop to be a loop with the
property that x(yz) = 1 implies (xy)z = 1. More generally we will
define an Associative Element of a quasigroup to be an element a
with the property that x(yz) — a implies (xy)z — a. In this note some
of the properties of associative elements will be considered.

LEMMA 1. / / a is an associative element of a quasigroup G
then (xy)z — a implies x{yz) = a.

Proof. Assume that (xy)z — a. Since G is a quasigroup there
exists an element v such that v(yz) = a. Hence, since a is associative
(vy)z — a. Thus (vy)z — (xy)z and so x — v since G is a quasi-group.

THEOREM 2. A quasigroup which contains an associative element
is a loop.

Proof. Let a be an associative element and y any element of the
quasigroup, then there exist elements z and b such that (ay)z — a and
ba = a. Thus a — b[(ay)z] — [b(ay)]z, since a is associative. But a —
(ay)z and so b(ay) = ay. However y is any element of the quasigroup
and so bx — x for all x in the quasigroup. Thus 6 is a left unit and
similarly there exists a right unit and hence a unit element.

Not all loops contain associative elements, for example the loop
given by the following multiplication table.
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The loop given by the following multiplication table contains an
associative element 2, but the unit element 1 is not associative, i.e.,
the loop is not weak inverse.
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Bruck [11 defines the Left Nucleus, NL of a loop to be the set of
those elements n satisfying (nx)y — n(xy) for all x and y. The Middle
and Right Nuclei, NM and NR, are similarly defined. The Nucleus,
N — NLΓ) NM Π NΛ. Bruck shows that N is a group. Osborn shows
that the nuclei of a weak inverse loop coincide. More generally we
have the following result.

THEOREM 3. / / a loop contains an associative element then the
nuclei coincide.

Proof. In a loop NM φ 0 since 1 e NM.
Let n belong to NM, x and y be any elements of the loop and a

be an associative element of the loop.
There exists an element z such that

a = [x(yn)]z

= x[(yn)z], a is associative ,

= x[y(nz)], neNM ,

= (xy)(nz), a is associative ,

— [(xy)n]z, a is associative .

Thus [x(yn)]z — [(xy)n]z and so x(yn) — (xy)n. Hence n e NR1 and
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so NM £ NR. Reversing the argument shows that NΛ <Ξ NM and hence
NB = NM. Similarly NL = NM.

Writing A for the set of associative elements we have the following
relationship between A and N.

THEOREM 4. If a loop is weak inverse then the set of associative
elements coincides with the nucleus. If a loop is not weak inverse
then no associative element is a member of the nucleus and the
product of any two associative elements is not associative.

Proof. We show first that if, in a loop, A Φ 0 , then a e A and
ne N implies An = A and aN — A.

Let nm — 1. Then since N is a group me M and mn — 1. Also
(an)m — a(nm) — a.

Let an — (xy)z. Then

a = [(xy)z]m,

= (xy)(zm), ae A

= x[y(zm)], ae A

— x[(yz)m], me N

— [x(yz)]my ae A .

Thus [(xy)z]m — [x(yz)]m and so (xy)z = x(yz) and hence an is associ-
ative, i.e., ane A. Thus An £ A and aN gΞ A.

It follows that Am £ A and so (Am)n gΞ A%. But (Am)w =
A(mn) — A and so A £ An. Thus A.% = A.

To show that αΛΓ 3 i let δ e A and ak = δ. Given elements ί/
and 2; there exists an element x such that b — x[(yz)k] — [x(yz)]k since
be A and as b — ak we have α = x(yz) and so α =

Thus b =

= (xy)(zk)

— x[y(zk)] since 6 e A .

Hence [̂(τ/̂ )fc] = x[y(zk)] and so (^)A: = y(zk). Thus ke N and so
δG αΛΓ and A £ aN. Hence A — aN. In a weak inverse loop le A
and so N — IN — A.

If A Π N Φ 0 , say ye A f] N then τ/iV = A and yN — N since N
is a group and so A—N. But 16 N and hence 1 e A, i.e., the loop
is weak inverse.

If AA Π Aφ 0 , then there exist α, δ, c € A such that αδ = c.
But aN — A and so an — c for some ne N. Thus b — n, i.e., δe AT
and so A Π N Φ 0 and hence the loop is weak inverse. This completes
the proof of Theorem 4.
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