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The main result yields some information on the class group
of a domain R in terms of the class group of RjxR. With
slightly stronger hypotheses than are strictly necessary, we
state the main result: Let R be a regular domain, x a prime
element contained in the radical of R, and suppose that RjxR
is locally a unique factorization domain. Let {/<*} be a set of
unmixed height 1 ideals of R such that the classes of
{Ia -f xR/xR} generate the class group of RjxR; then the
classes of {/*} generate the class group of R.

The result of SamuePs and Buchsbaum's stating that if R is a
regular U.F.D., then iϋ[[X]] is a regular U.F.D. [4] has been generalized
by P. Salmon and the present author in two different directions.
Salmon [2, Prop. 3] showed that if R is a regular domain, x is a
prime element of R which is contained in the radical of R, and R/xR
is a U.F.D., then R is a U.F.D. It was shown [1, Cor. 4] that the
map of the class group of R into the class group of i2[[X]] is onto
if R is a regular noetherian domain. We have found a theorem which
simultaneously generalizes the last two results, and even allows a
little weakening of the hypotheses.

To set the notation and terminology, we will say that a domain
R is locally U.F.D. if the quotient ring RM is a U.F.D. for all maximal
ideals M of R. For any Krull domain R, we will denote the class
group (see [3]) of R by C(R). If I is an unmixed height 1 ideal of a
Krull domain R, we will denote the class of the class group determined
by / by cl(/). Finally, all rings considered will be commutative
noetherian domains with identity.

We wish to capitalize on a simple description of the class group
valid for domains which are locally U.F.D. We do so and prepare for
the main theorem by a sequence of (probably all known) lemmas.

LEMMA 1. If R is locally U.F.D., then R is a Krull domain.

Proof. Since R is noetherian, it is sufficient to show that R is
integrally closed. Since R = Π RM as M runs over all maximal ideals
of R, it will be enough to see that each RM is integrally closed. But
each RM is a U.F.D., hence integrally closed.

LEMMA 2. If R is locally U.F.D. and P is a height 1 prime of
R, then P is invertible.
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Proof. P is locally principal, hence locally free (as a module),
hence projective, hence invertible.

PROPOSITION 3. If R is locally a U.F.D., then the unmixed height
1 ideals of R are precisely all finite products of minimal prime ideals
of R.

Let Ix and I2 be two unmixed height 1 ideals of R, then cl(/i) = cl(/2)
if and only if there are elements a and b in R such that al1 — bl2.

Proof. From Lemma 2 we know that any product of height 1
prime ideals of R is invertible. Given an unmixed height 1 ideal /
determined by the valuation data / = {x | vP.(x) Ξ> n{} (almost all w* = 0),
we form J — ΓL^o -P**. Since J is invertible, we have J — R: (R: J),
so J is also unmixed of height 1. Since I and J are determined by
same valuation data, this entails I — J. If now It and /2 are unmixed
height 1 ideals such that C1(1Ί) = cl(/2), the IJf1 is invertible and is
determined by the same data as some /• R, where / is in the quotient
field of R. We have therefore IJΪ1 — fR, or I± — fL, which is
equivalent to the final assertion.

LEMMA. 4. Let R be locally U.F.D., and suppose that R is a
Macaulay ring. Let I be an unmixed height 1 ideal of R and x an
element of the radical of R such that I: xR — I. Then I + xR is
unmixed of height 2.

Proof. Word for word the proof of Lemma 2 of [1],

LEMMA 5. Let the hypotheses be as in Lemma 4 and suppose
that x is prime and R/xR is a Krull domain. Let h denote the
homomorphism of R onto R/xR. If d is an element of R such that
dl~x c: R [for I an unmixed height 1 ideal of R), then cl

Proof. From II"1 = R, we get /(c?/-1) = dR. Applying h to both
sides of the last equation, we obtain h(l)-h{dl~ι) = h(d) R/xR, which
yields the result.

THEOREM 6. Let R be a Macaulay ring which is locally U.F.D.
Let x be a prime element of the radical of R such that R/xR is locally
U.F.D. Let h denote the natural homomorphism of R onto R/xR. If
{Ia} is a set unmixed height 1 ideals of R such that Ia: xR = Ia and
{dh(Ia)} generates C(R/xR), then {cl (Jα)} generates C(R).

Proof. Let P be a height 1 prime ideal of R. If xeP, then
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P — xR, and cl(P) is the identity element of C(R). If x&P, we
must have P\xR — P and Lemma 4 shows that P + xR is unmixed
of height 2. Thus Ẑ (P) is unmixed of height 1 in R/xR, so the
hypotheses yield that h(P) = fh{I^ /&(!*)'* for some / in the
quotient field of R/xR and integers eu ,ek. Write / = h(a)/h(b)
for α, bsR. Then /ι(δ)Λ(P)^(/1)-

ei • Λ(Ifc)-
β* = /φ) . Choose d,εR

such that a; does not divide d{ and d̂ Zr'* £Ξ i£ for i = 1, , fc. Form
the ideal J = bPidJΐ*1) (dklι

ek). Lemma 5 shows that &(/) is
principal; say h(I) = h(t)R/xR. We may assume ίεJ. From I<^tR + xR
and I:x — I, we get I = tR + xl. Since a? is in the radical of i?, we
must have J = tR by Nakayama's lemma. This implies that P =
tjbd1 dfc /i1 Ip, so cl(P) is in the subgroup of C(R) generated
by {cl (Ia)}. Since P is an arbitrary height 1 prime ideal, the theorem
is established.

REMARKS. (1) Salmon's result cited in the introduction is ob-
tained by choosing the set {/«} to consist of all principal ideals of R
generated by elements of R which are not divisible by x.

(2) If R is a regular domain, then ϋ?[[X]] is also, and Theorem
6 may be applied with x — X and the set of ideals {Pαjβ[[X]]} where
Pa ranges over the height 1 prime ideals of R. We get that {cl(Pα2ϋ[[X]])}
generate C(iϋ[[X]]) which shows that the natural homomorphism
C(R) —> C(iϋ[[X]]) is onto (it is easily seen that it is one to one).

(3) Should SamueΓs question "Does U.F.D. imply Maeaulay?"
[4] have an affirmative answer, then the hypotheses of Theorem 6
could be further weakened in the obvious fashion.
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