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In this paper, we study the nth order analogues of
certain integral operators allied to the Hilbert transform and
to Dirichlet’s integrals. Most of the results known to be
true for n =0 are proved for the general case. Some cases
in which the analogy fails are also considered. Among the
integrals considered are transforms B/"(f) and I\”(f) defined
by

oo

BM(f) = (_1)n-@—n:;D.L(P.V.) ~ S
& (=1y(at — e

= 2m + 1! dt

« Sin alt — x) —

I(F) = <mﬁ@ﬁL@Vﬂ”m>
2 (—=1D™(at — ax)?™
X 2T (eml

(t_ x)2n+3

— cos a(t — x) dt

Inversion processes by which f may be expressed in terms of
the B and I\" operators are also obtained. The results
proved in the paper are also shown to be frue for integrals
defined with respect to a continuous parameter ». These
integrals reduce to the original ones when » is an integer.

Let the functions c(x), s(x), e (xr) and s,(x) be defined as
follows:

e (x) = i(ljwﬂngmcmmzo,

=0 (2m )'
s.(t) = (2%) ! (—1) sin at — sP(at)

t2n+1

en(t) = (2:)' (—1) e (at) — cos at

gmrt '

where « is a fixed positive number. Then we define the following
integrals.
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Dy (f)a) = | f®s.(t — )it ,
SEN@ = | fOe.t — it
o) = @n+ 1) | s L= g,

BO@) = @n+ ) RV [ st =D ar,

I#(F) (@) = (2n + 2)@n + 1) (P.V.)S Ft) Lt — %) n“ )f) dt
D, S, C and B are defined for integers n = 0, and I\™ for
n = —1. The operators DS, S, Ci* BY and I will be denoted by
D, S., C,, B, and I, respectively.

The above integrals are generalisations of known integral operators.
D.(f) being the Dirichlet integral, and S.(f) its well-known ‘conjugate’.
B,(f) was introduced by Boas in [1], and has since been studied by
Goldberg [2], Heywood [3] and Kober {4]. The transform I,(f) has
been studied by the author elsewhere., The integrals are all related
to Hilbert and Fourier transforms, and the properties of B.(f) and
L(f) have been obtained from identities involving the transforms and
the operators D, and S..

In this paper we obtain results involving D/”(f) and S{(f) similar
to those of D.(f) and S,(f), and use these in studying the transforms
B»(f) and I)”(f). Among the results obtained are inversion processes
by which f may be expressed in terms of BX(f) and I{™(f). In
Section 7, we show that the exponent # may be replaced by a continuous
real (or complex) variable. This is done by replacing the kernels defining
the integrals by certain others which reduce to the ones already given
when the exponent is an integer. The integrals DY so obtained define
a semi-group of operators.

We shall consider functions of the class L?(— o, o )(p > 1) only.
This class will in general be denoted by L?. The positive numbers p and
p" will be connected by the equation 1/p + 1/p’ = 1, and the expression

(I 1rwae)”

will be denoted by || f|l,. Most of the equations and identities of this
paper should be taken as true almost everywhere. This will not be
indicated in each case. The Hilbert transform is defined by

H(f)e) = 2@V |7 SO a,
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and the Fourier transform & (f) of a funetion feL?* 1 =£p=2)is
given by

Fa) = 7 (f)) = V;&&&jNMWL

2. The properties of D{(f) and S{*(f). The following lemmas
will be employed in the proofs of the results of this section.

LemMA 1. (a) H(s,)(@) = —cu(x), (b) H(c,)(x) = sa(2).

Proof. Consider the function

< (iz)m _ eiaz

m=0 m! .
o) = L a= e,

where g = g(x), ¢ real. g¢(z) is a regular function for ¥ = 0, and tends
to 0 uniformly for 0 < argz < 7 as |2] — . Hence by integrating
9(2)/z — & round the semi-circle of radius R in the upper half plane
indented at ¢ = &, we have

<Se+s Y_:\) tg(t) at + S ﬁjff)s Retdg — %§ 9(& + de*)dg = 0.

On letting § — 0 and R — <, we obtain
H(g)(&) = 19(8) .
The results (a) and (b) follow by equating real and imaginary parts of

this identity.

LeEMMA 2.

@) Vars(e—y = (a — [L])y"e’dt

= .
1/'2% o —

. SO _ — 1 * _ Zn_’__?_‘_ iz—y)t
(b) VI ofs — 9) = L(a tpen L gz,
Proof. Let

I, = .__S (@ — tyedt .
n!

Then it is easy to verify by integrating by parts that
(tza)™

I, — ", = —
Taxn!
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Hence by making appropriate summation and putting 2n for n, we
obtain

s (ixa)m — eia:a
(—1) S (a - t)?neixtdt I m=0 m!
@m1 o T

A similar expression is obtained by putting —a for «, and the results
of the lemma are then easily verified.

LEMMA 3. Let

W) = |”_ftyo(e — it .
If felL*(p=1), ge L(q = 1), where 1/p + 1/q = 1, then

Tl =l o llglle s
where 1/r = 1/p + 1/g — 1.

Proof. This is a well-known result, a proof of which is given in
Lemma B, p. 97, of [5]. (The case in which p =1 or ¢ =1 is obtained
similarly).

In the next theorem, we give expressions for D{(f) and S{(f)
in terms of f. These results will be applied later in calculating the
integrals for certain special cases.

THEOREM 1. If fe L? where 1 < p £ 2, then for n =0,
@ D)@ = 1/2 || (@1t iweat,

® se@ =L | -ty feea.

Proof. Let
9.(x) = (@ — |x|)"e %" for ze(—a,a); =0 otherwise,
and let
0@ = 121 (@ — |z e for we(—a,a); =0 otherwise .
x

Then §, and §, are given in Lemma 2., Hence Theorem 1 follows by
applying the product formula for Fourier transforms (Theorems 49 and
75 of [5]).

COROLLARY 1.1. If fe L? where 1 < p < 2, then for n =0,
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DP(f)=0 if and only if flx)=0 for zec(—a,a)
and
SP(f)y=10 if and only if f(x) =0 for ze(—a, a).

Proof. This obviously follows from Theorem 1.

COROLLARY 1.2, Let m =0 and n=0. Then
(@)  DM(s)(@) = SiM(e)(®) = Spinl®),
(b)y =S (s.)(x) = D(C,)(®) = Coym() .

Proof. Let g, and ¢, be defined as in the proof of Theorem 1
with ¥y = 0. Then by Lemma 2, we have

g(x) = 12w s,(¥) and §u(x) = iV'2mw ¢, () .
Hence by the inversion for Fourier transforms it follows that
127 8.(%) = (@ — |2 |)** for xe(—a, a); = 0 otherwise
and
—iV2rm é,(x) = BEAN (@ — |z ]y for xe(—a,a); =0 otherwise.
x
By putting s, for f and writing m for » in Theorem 1, we have
Dr)@) = = | (@— [t ) edt = 5,,(0)
2 J-a
@) = L2 " L@ = rpymeemr = —c(o) |
2r )= ¢

The results involving ¢, follow by proceeding similarly.

THEOREM 2. If feL® where p > 1, then for n = 0, we have
DM (fyeLr and S (f)elr forr=p.

Also, for ge L™, we have

(1) |-_swpenma =" foprowa,
(2) |__swsered = | soseeod.

Proof. Since s, (x) =01) as x—0 and is 0(1/2*) as x— o if
% =1, it belongs to L? for ¢ = 1. Hence by Lemma 3, we have
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DM(fyeLlr forrzp if nz=1.

For n = 0,

Do(f) (@) = 259 p v, S“" S sinat 5,
T et — 1

__ sinaw (P.V.) r f(t) cos at dt .
T t—x

—oo

It is thus clear from Theorem 101 of [5] that D,(f)e L*. The rerult
D,(f)e L™ for r > p follows from Lemma 3 since s((x)e L for ¢ > 1.
It is easy to verify that c.(x)e L? for ¢ > 1. Hence we also have

SM(f)yeL” for r>p.

In Theorem 4 (below) we prove that S™(f) = H{D{'(f)}. Hence it
follows from Theorem 101 of [5] that S{”(f)e L*. Now suppose that
ge L”. Then we have

o@Dy = | g | e e — vyt
= |7 swat|”_g@s.w — s = |_soDr@®at

the inversion of the integrals being justified by absolute convergence.
The proof of the second product formula follows similarly.

THEOREM 3. If feL? (p > 1), then for m= 0,n = 0, we have
(@) DD (fHHz) = =SS (@) = Dym+(f) (@) ,
(d)  SiM{DM(NHN@) = DS (f)Na) = S (f)(@) .

Proof. By putting g(x) = s,(x — ¥) in the product formulae (1Y
and (2) and using Corollary 1.2, we have

| _se = wDim(r)e)s = | fOsnntt — vt

| _sula = S )@z = | fBennlt — )it

i.e.
DD (M) = D™ ™ (f)(y), DS (fNy) = Sam+(F)(v) .
The other results of the theorem ean be obtained by considering c,(x)

in place of s,(x).

COROLLARY 3.1. Let feL” (p >1) and let | = n be integers.
(@) If D{M(f) =0, then D (f) = SH(f)=0,
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(b) If Sg"(f) =0, then S;P(f) = D(f)=0.
Proof. These results are obvious consequences of Theorem 3.

REMARK 1. We observe here that Corollary 1.1 implies that if
fe L? where 1 < p <2, then D/®(f) = 0 implies D (f) = S#(f)=0
for all 1= 0, and so also for S *(f). In Section 6, we show that
this is the case for fe L (p > 1).

THEOREM 4. If fe L? (p > 1), then for n = 0,
(@) DS{H(f)} = H{DM ()} = SaM(f)
(b) Ssm{H(f)} = H{SM(f)} = —DM(f) .

Proof. From the product formula for Hilbert transforms (Theorem
102 of [5]) and Lemma 1, we clearly have

|"_st —wrwa = =" B Oent — it
and

["_ett = wfwar = |”_H()W)s.(t — )t .
We shall now show that D/"{H(f)} = H{D,"(f)}. The corresponding
result for S/ follows similarly. Let 6 > 0 and let b < ., Then by
the absolute convergence of the integrals involved, we have

e R

and

Y_—: X (ﬁﬁy gb_bf(t +x— y)sn(t — Yt = Eb_bsn(t B y)dt Sij% -

) -8
Let (S + Se ) be denoted by S Then on letting b — oo, we obtain

§+8

loo
oo —co

|~ prs)was =" st —pat |~ D go
—— X — Y —eo - r —

Since s,(t)e L* for ¢ > 1, and since

tim || 2@ — 2] L da

T —1¢

=0,

»

the required result follows by letting ¢ — 0,
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REMARK 2. It is obvious from Theorem 4 that D/™(f) = 0 if and
only if DM{H(f)} = 0, with a similar result for S;™(f).

We shall now consider the equation D "(f) = Af. For the case
n =0, we have D,(f) = D AD.(f)} = AD.(f), so that x =1, It has
been shown (for example see Lemma 3(b) of [4]) that in this case, f
is a member of the class G% of functions f(z)e L* such that f(z)
(2 =« + iy) is an entire function of exponential order =a. For n >0
however, we show in the next theorem that there is no nontrivial
member of L*(1 < p < 2) satisfying the equation. Further, we show
that in any case, we must have [A| < 1,

THEOREM 5. Suppose that f satisfies the equation
D(f) = Nf where n >0 and N~ 0.

) If feLr (1< p<2), then f= 0.
(b) If feL® (p >2), then || < 1.

Proof. Suppose that fe L* (1 <p <2). Then by applying Theorem
1(a), we have

1 “ 20 2 —1zt —_
| @~ 1t ieat = v,
so that
s o (la—lz)fl@) for |z|<a
Xf(%)w{ 0 for || >a

It is now obvious that = 0, and hence that f= 0 by the uniqueness
of Fourier transforms,

Now consider the general case in which fe L? (p > 1). Then we
clearly have

D (f) = DD ()Y = MDD (f) = NS,
and it follows by induction that for every positive integer k,
D™ (f) = Nf
Now from Lemma 3, it is clear that
D (Y S 1S s 1 Sealle

where ¢ = 1,1/p+1/g=1 and 1/r =1/p + 1/g — 1. It is however
not difficult to see that for ¢ = 1

}GLm ”Sanq =0 ’
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so that

lim || D (f) ||, = 0 for r = p.
k—o0

Since D™ (f) = Mf however, we must have [N <1 or ||f]l, = 0.
The result (b) follows.

COROLLARY 5.1. Let feL? (p<1) and let m >0 and n =0 be
integers. Then D™ (f) = Di(f) if and only if D/™(f) = 0.

Proof. By Theorem 3(a), we have

DD ()} = D™ (f) = Dm(f) .

The result clearly follows from Theorem 5.

3. Representation theorems for B/”(f) and I,"(f). We shall
now obtain results by which B *(f) and I'*(f) are expressed in terms
of D,”(f) and S;"(f).

LemMmA 4. Let fe L?(p > 1) and let ge L*'. If
r f(t)?loi-g(t — x)dt belongs to L™ for some number r > 1, then

—e x

d (= I d
A" oot — it = |” st L gt — wat

Proof. Let x be a fixed finite number. Then by absolute con-
vergence, we have

z
0

e (= o d " d ..
w7006 —wie =" o] 2o — vy
=" fot - 2) — gnat

and the required result follows immediately.
The following identities can be obtained directly from the definition.

(3) IM(f) = " H(f) — S9(f)
(4) IE(f) = H(f) — 8uf)
(5) L@ = —s2@); - (@) = o, (x)

LeMMmA 5. If feL” (p > 1), then C™(f)e L™ for r = p, and
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Ca(f) = aD"(f) + "éi“soi“(f ).
H

Proof. We have the identity

Dot — a) = —as,(t — @) + @n + 1) BEZD)
da t—«

Sinece —as,(t) + (2n + 1)c,(t)/t belongs to L? for ¢ = 1, it is clear from
Lemma 8 that

S” Ft) Lt — 2)dt
—eo dx

belongs to L" for » = p. Hence it follows that C”(f)e L" for » = p.
The identity of the lemma then follows from Lemma 4.

THEOREM 6. If feL® (p <1), then B (f)e L?, and

By (f) = e’ H(f) — aS."(f) + % D (f) .

Proof. Since

eM(ax) — cos ax — (_1)n£¥£)_21“_
(—1)*a(2n)! @)1 (g ¢ 1) Sn;x)

2. 1
Lt

belongs to L? for ¢ = 1, it follows from Lemma 3 and from obvious
identities that

aSi(f) — e H() + B = |7 sy st - wdt,
—o x
and that this belongs to L™ for » = p. Hence by Lemma 4,
QSUF) — @ HH() + BES) = L Di(fe L
X

The theorem now follows from Theorem 2 and from the fact that
H(f)e Le.

THEOREM 7. If feL® (p > 1), then I/(f)e L?, and

d

L(f) = @ H(f) — aS(f) + 2a 2=
dx

DI(f) + —g— SW(F) .
X

Proof. By using the identity
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2n + 1) Oic—%{(% (2n+1)_.n_@T)
+ @0+ 1)@+ 2) Ll =2
(& — @)

and proceeding as in previous cases (Lemma 5 and Theorem 6), we have
—aB(f) + LO(f) = L O (f)e It
for r = p, so that I\"(f)e L* (by Theorem 6).
Next by substituting for Ci™(f) and B/*(f) from Lemma 5 and
Theorem 6 respectively, we derive the identity given in the theorem.

COROLLARY 6.1. If feL® (p > 1), then

S&(f) = @8I (f) — 2a L D) — Lo S(r)

Proof. This is easily verified by substituting for I'*'(f) — a* ™ H(f)
in (3).

Note. An expression similar to that given in Corollary 6.1 can be
obtained for D "™ (f) by putting H(f) for f and using Theorem 4.
By substituting DS™(f), Si™(f) and H(f) respectively for f in

the identities of Theorems 6 and 7, and using Theorems 3 and 4, we
have the following:

(8) BOWD™(F)} = @ SI(F) — aSP () + - D)
(T)  BOASIM(H)} = —a#Di™(f) + aD§™(f) + %S;M(f)

(8)  BOUH(D} = —a™f + aDi"(f) + - 80(f)

LoD (F)} = aniSE(f) — a8 ()

) + 2 ponpy 4 L)
LPS() = —aDI(F) + @D)
(10)

+ 26( d S(m+n)(f) d D m—)—n)(f')

ILMH(f)} = —a* P f 4 a’Di™(f)
(11) d:

d (n _ (n
+ 20— 8.7(f) 7o Dan(f)
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The results of the next theorem will be applied in deriving the
inversion processes for B{(f) and I.,™(f).

THEOREM 8. If fe L? (p>1) and if f satisfies D™ " (f) = D/™(f)
for some number m = 0, then
(a) BoD(f) — [} = a™{Sm(f) — H(f)}
BoSM(f) — H(f)y = —a*™D™(f) — f}.
(b) LD (f) — f} = a2{Sym(f) — H(f)},
IMSM(f) — H(f)} = —a™{D,"(f) — f}.

Proof. It is quite easy to verify these results from the identities
(6)—(11) by applying Corollary 5.1. We observe that the condition
Dm(f) = DyM(f) is an identity if m = 0, and for m > 0, it implies
that

D w(f) = Di(f) = 0.

4. Product formulae and commutative property. It is clear
that By(f) — o™ H(f) and I)V(f) — o*™H(f) are absolutely and
uniformly convergent integrals. Hence for gc L?', we have

["_so@emo - am e

_ g;g(t)dt S:f(x) S.(x — t)(a-c—_aln)ﬂ(x — t) dac

_ (= < 8.t — ) — &t — 1)
=" s@az | o — t

= —glf(x) {BP(9)(@) — a**H(g)(x)}da .

—o0

A similar result holds for I{™(f) — a**:H(f).
Hence by the product formula for Hilbert transforms (Theorem 102
of [5]), we have

THEOREM 9. If feL® (p > 1), ge L, then
@ |"ewBr(®a = -|"_foBr@d,

(b) Sjw g(t)Lé")(f)(t)dt = —S f(t)ﬁ")(g)(t)dt .

Some of the results obtained in the next section depend on the

commutative property exibited by each pair of the transforms con-
sidered here. In view of this we prove:

THEOREM 10, If feL® (p > 1), then
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@) BMX(N)} = X{B ()}
(b) LMX(N)} = X{L" (N

where X represents of the operators D™, Si™ or H.

Proof. Since B(f) — o™+t H(f) and I™(f) — & "H(f) define
uniformly convergent integrals, the results
X{B'(f) — a P H(f)} = By{X(f)} — e H{X(F)}
and
X{LV(F) — " H(f)} = L{X(f)} — e H{X(f)}

(X = Df™ or Sg™) follow by obvious inversion of integrals. Theorems
10(a) and (b) for X = D™ or Si™ then follow by applying Theorem 4.
Next we proceed as in the proof of Theorem 4 to show that

HBY(f)} + ' f = HBL(f) — a* H(f)} = BOH(F)} + a0 f
and

HUIP(F)} + a4t f = HIN(S) — e H( )} = LOMHP) + af
The case X = H clearly follows.

5. Reduction of B{"(f) and I\”(f). The results of this section
give conditions under which the operators B, I\ and B%™, I3 reduce
to the Hilbert transform and the identity

THEOREM 11. If feL? (p> 1) and if n =0, then
(a) BP(f) = aH(f) if and only if D{™(f) = 0.
(b)) If L"(f) = 0, then B"(f) = —a**f,

Proof. Since D/™(f) = 0 implies that S*(f) = 0 (Corollary 3.1), it
follows from Theorem 6 that By(f) = a* " H(f) whenever D/"(f) = 0.
Also, under this condition, we have

Bi™(f) = @ BP(H(F)) = —aif (by (8) .
Now suppose that BJ'(f) = a**'H(f). Then by Theorem 10, we have
B{H(f)} = HIB(f)} = —a™*'f,
so that Theorem 6 and result (8) yield
~aS(f) + L D(f) =0,

aD{(f) + di S(f)=0.
X
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These equations clearly lead to

L D) + ) =0,

The only solution of this equation for which D/™(f)e L? is clearly
given by

D (f)=0.

Note. It has been proved (see [4]) that for n = 0, the converse
of Theorem 11(b) also holds,

THEOREM 12. If feL® (p > 1) and of n =0, then
(@) L"(f) = a™H(f) if and only if D,"(f) = 0.
(b) If DM(f) =0, then I;™ (f) = —af.

Proof. By proceeding as in the proof of Theorem 11 and applying
Corollary 3.1 and Theorem 7, it follows that I"(f) = a*"H(f) if
D/™(f) = 0. Also, under this condition, we have

L(f) = @ LH(f)} = —a*f (by (11).
Now suppose that I,"(f) = a**2H(f). Then by Theorem 10, we have
IMH(f)} = HIL(f)} = —a™ ™ f .

Hence Theorem 6 and result (11) yield

7 D) + d L5 =0,

a’D(f) + Zad— "(f) —

—a®S{"(f) + 2a—-

On eliminating S/™(f), we obtain

( I — 1+ V2ra >(T — (1 - Vé‘)Zaz)D;M( f)=0.

The only nonvanishing solution of this equation belonging to L” is of
the form

D(f) = Ae~Fu=! - Beg=Fals]

where G, and B, are positive, and A and B are arbitrary constants.
Now it is easily seen, by applying Theorem 1(a), that

—izt

de .

Do(e~#")(z) = B S_a Bf .
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Since we require D, {D"(f)} = Di{"(f) however, we must have A=B =0,

Note., It has been proved by the author that for n = 0, the
converse of Theorem 12(b) holds.

6. The inversion processes. Formulae have been obtained by
whieh f may be expressed in terms of either of the transforms B,(f) or
L(f). In this section, we shall express f in terms of the mth order
integrals under restricted conditions. In the first case we assume that f
satisfies D.™(f) = 0. The other formulae involved express f in terms of
the nth order integrals and the operators of order 0. The general case in
which f is expressed in terms of the nth order integrals only will not
be treated here since the procedure involves the solution of complicated
equations for expressing D ™(f) in terms of D,(f). (see Corollary 6.1).

THEOREM 13. Suppose that fe L* (p > 1), and denote BL(f) by
fx, Then
(a) for any integer n = 0, we have

f=armSurn — By + | Dt
(b) if we also have D&(f) = 0, then
f = a8 (£ — HUED)
Proof. By putting m = 0 in Theorem 8(a), we obtain
BR(S.(£)} — BOH()} = af — aD,(f) .
Hence by Theorem 10,

So(f) — H(f) = a'f — a "' Du(f) .

To complete the proof of (a), we express D.(f) in terms of f*. On
putting m = » = 0 in (6) and using Theorem 10, we have

Du(f*) = %Dam .
Sinee D, (f)e L?, lim,_... D.(f)(x) = 0. Hence

(12) D@ = | _Durwrat .

Now suppose that D/”(f) = 0. Then on putting m = »n in Theorem
8(a) and using Theorem 10, we have

Sg(fy) — H(fX) = a7 f — a7 Dg"(f) .
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Hence

= 8 (F) — H(f} .

Note. It should be observed that Theorem 13(b) has been written
in its present form for convenience. In fact, we have S/™(f}) =
B&Si(F)} = 0 sinee D™(f) = 0,

In Remark 1, we observed that if felL? (1<p=<2) and if
D{"(f) =0, then D{"(f) =0 for all ] = 0. We can now deduce this
result for the case p > 2.

COROLLARY 13.1. If fe L’ (p > 1) and if Di(f) =0, then
DP(f)=20 for all imtegers 1 = 0.
Proof. From Theorems 13(a) and (b) it is clear that D/ (f) = 0

implies that D,(f*) = 0. Hence it follows from (12) that D,(f) = 0.
Corollary 18.1 now follows from Corollary 3.1.

THEOREM 14. Swuppose that fe L® (p > 1) and let I\(f) be denoted
by f.. Then
(a) for any integer n = 0, we have

f =t ST — B + tal ou{)e) sin2ai — ot

x
where

oD@ = S — 22| _DuFyerdt,
(b) if we also have D/™(f) = 0, then
f - a—zn—z{sa(fn) - H(fn)} .

Proof, By putting m = 0 in Theorem 8(b), we have
LS} — LMH()} = a*f — a®D.(f) .
Hence by Theorem 10,
Su(fa) — H(F.) = a°f — a****Dy(f) .

We shall now express D,(f) in terms of f to complete the proof of
(a). On putting m =n =20 in (9) and (10) and using Theorem 10, we
obtain

(13) D) = 2a-j—Da<f) + L 5.0,
X dx
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2

N d . —(L
(19) S(f) = 2a T Sulf) — =5 Dulf) -

Since D.(f), S.(f), (d/dx)D.(f) and (d/dx)S.(f) belong to L?, we have
lim D.(f)@) = lim S.(7)(@) = lim -L5,()(@)
= lim LD (@) =0.
koo da?
On integrating (13), we obtain
| DDt = 2aD.(9) + d%sxf) :

This together with (14) gives

T Duf) + 4Do(f) = 2a| D))t — S.(F) = —0u() .

z
dx* -

This equation can be written as

d;dx<eziazd;dea(f) . 2iae2iaa:Da(f)) — Mo.a(f)(x)e2iax .

Hence

L Do(f) — 2iaDa(f) = __S” ol POt .
dx —

A similar equation is obtained by putting —<¢ for 4. It is then obvious
that

2aD,(f) = Xi_w”“( 7)(¢) sin 2a(t — @)dt .

Now suppose that D;”(f) = 0. Then by putting m =x in Theorem 8(b)
and using Theorem 10, we have

Si(F) — H(f.) = —a™*(f — D™(f))
and the result (b) of the theorem follows,

7. Note on the continuous analogue of the operators, In
this section, we define continuous analogues of the operators studied
above which preserve the main properties of the integral transforms.
This is done by defining kernels similar to those given in Seection 1,
and which reduce to these when the parameter involved is an integer.
Hence for all v = 0, we define s,(z) and ¢,(x) by
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mm:%;ﬁm—uwww

and

m@:%%ﬁm~uw%wwn

It is clear, by Lemma 2 that these kernels reduce to those already
given when v is an integer. By applying known results involving the
Fourier transform of a Hilbert transform, it also follows that results
similar to those given in Lemma 1 hold for s,(x) and ¢,(x). It is then
obvious by procedure similar to that employed above, that if the
operators are defined as in Section 1 with v in place of =, then the
results proved with respect to the discrete parameter also hold for the
continuous case. In particular, from Theorem 3(a), it follows that for
all vy = 0 and ¢ = 0, we have

DD} = D (f)

so that {D '} 0 <y =  forms a family of ‘strongly continuous semi-
group of operators’. Note that in this case we do not have D = I.
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