
Pacific Journal of
Mathematics

EMBEDDING THEOREMS FOR COMMUTATIVE BANACH
ALGEBRAS

WILLIAM GEORGE BADE AND PHILIP C. CURTIS, JR.

Vol. 18, No. 3 May 1966



PACIFIC JOURNAL OF MATHEMATICS
Vol. 18, No. 3, 1966

EMBEDDING THEOREMS FOR COMMUTATIVE
BANACH ALGEBRAS

WILLIAM G. BADE AND PHILIP C. CURTIS, JR.

One knows from the Gelfand theory that every commutative
semisimple Banach algebra S2I containing an identity is a
separating subalgebra of the algebra of all complex continuous
functions on the space of maximal ideals of 21. We shall be
concerned in this paper with conditions which when imposed
on a separating Banach subalgebra % of C(Ω)f Ω a compact
Hausdorff space, will guarantee that 21 = C(β). The conditions
will take the form of restrictions on either the algebra or
the space Ω. For example we prove that if % is an ε-normal
Banach subalgebra of C(Ω) then 21 = C(Ω) if an appropriate
boundedness condition holds locally on Ω. If Ω is assumed to
be an F space in the sense of Gillman and Henriksen this
boundedness assumption is redundant. These results include
a recent characterization of Sidon sets in discrete groups due
to Rudin and have applications to interpolation problems for
bounded analytic functions.

Various conditions which guarantee that 51 = C(Ω) are known. One,
due to Glicksberg [5], is the following.

( 1 ) Assume 31 is sup-norm closed, contains the constants, and in
addition assume that the restriction of 31 to each closed subset F of
Ω is a closed subalgebra of C(F).

Another, due to the present authors [1], is the following:

(2 ) Assume Ω is a totally disconnected F-space and that Ω is the
maximal ideal space for 31.

A compact space Ω is an i^-space if disjoint open Fσ sets in Ω
have disjoint closures. This class of spaces was introduced by Gillman
and Henriksen in [4] and includes stonian and σ-stonian spaces as well
as their closed subsets. There are also connected examples.
« The results in this paper center around extensions of these condi-

tions as well as others due to Katznelson [11,12]. Many of the
techniques apply equally well in a Banach space setting, and are
discussed in this way where possible.

To begin the discussion we need the following definition: given
ε > 0, call a subset % c C(Ω) an ε-normal family if for each pair Fu F2

of disjoint compact subsets of Ω there exists an x e g satisfying

( i ) | & ( ω ) - l | < e , ωeFu

(ii) 1 x(ω) I < ε, ωeF2.
By a Banach subalgebra of C(Ω) we will mean a subalgebra of C(Ω),
not necessarily containing the constants, which is a Banach algebra
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under some norm.
The result of the paper which illustrates the unusual properties

of F-spaces is the following:

THEOREM A. Let Ω be a compact F-space and 21 be a Banach
subalgebra of C(Ω). If 21 is an e-normal subalgebra for an ε < 1/2
(in particular if 21 is dense) then 21 = C(Ω).

In addition to extending the result of [1] mentioned in (2) above,
this theorem contains Rudin's characterization of Sidon sets in discrete
groups and has applications to interpolation problems for bounded
analytic functions.

For general compact spaces Ω, we will call an ε-normal family
contained in a Banach subalgebra of C(ί2), or more generally contained
in the continuous image in C(Ω) of a Banach space X, locally bounded
if for each point ω there exists a compact neighborhood iVω such that
whenever the sets Fl9 F 2 belong to Nω, the x may be chosen to have
21-norm (or X norm) less than a constant depending on ω.

Our extension of (1) and the results of Katznelson is basically
contained in the following:

THEOREM B. Let Ω be a compact Hausdorff space, 21 a Banach
subalgebra of C(Ω). Then 21 = C(Ω) if the following conditions are
satisfied.

( 1 ) 21 is an e-normal family for some ε < 1/2.
( 2 ) 21 is locally bounded.

If Ω is an F-space (1) implies (2), thus proving Theorem A. Indeed
for F-spaces much can be said when 21 is only assumed to be the
continuous image of a Banach space X.

THEOREM C. Let Ω be a compact F-space and T a continuous
linear map of a Banach space X into C(Ω) such that TX forms an
ε-normal family for some ε < 1/4. Then there exists a finite open
covering Uu , Un of Ω such that

TX\ ϋi = CM), i = 1, ••-,%.

In general, linear subspaces of C(Ω) may be ε-normal, ε < 1/4,
without being dense, but for totally disconnected spaces density and
ε-normality are equivalent. A short argument shows that ε-normality
and density are also equivalent for arbitrary F-spaces.

Theorem C raises the question whether a continuous linear map
T of a Banach space X into C(Ω), Ω an F-space, which has dense



EMBEDDING THEOREMS FOR COMMUTATIVE BANACH ALGEBRAS 393

range, must be onto C(Ω). Section 4 contains an example due to J.
Lindenstrauss which shows that TXφC(Ω) in general. G. Seever [16]
has proved that TX — C(Ω) if one has the stronger assumption that
TX is normal on Ω. We give a new proof of Seever's theorem. An
unpublished result of Beurling which covers the case when X is an
adjoint space, C(Ω) = L, and T is weak star continuous is proved by
an argument of Helson.

We are indebted to J. Lindenstrauss and Y. Katznelson for the
elegant examples in § 4, and to Katznelson for illuminating discussions
of the problems of this paper.

1* Preliminaries* In this section we collect some facts about
approximation and onto maps. Given a bounded linear map T: X—> C0(i2),
where Ω is locally compact and X is a Banach space, one seeks con-
ditions to insure that TX — C0(Ω). These results are not new for the
most part, and the techniques appear in a variety of settings. We
first consider the general case T: X—> F, where Y is a Banach space.
Recall that a subset £ c 7 i s equilibrated if y in E and | a | ^ 1 implies
ay e E. The smallest convex equilibrated set containing E is denoted
by coe(E), the smallest convex set by co(E), their respective closures
by ~coe{E) and co(E).

LEMMA 1.1. Let E be a subset of Y. Then coe(E) contains the
closed unit ball S of Y if and only if

\y*\\ ^
yβE

for each y* e Y*.

Proof. Note coe(E) consists of all sums 2?=i α<2/o where y{ e E and
Σ?=i \oίi\^l. If 'coe(E) 3 S, then for each y* e Γ* and ε > 0 we can
find y0 = XLi oc%yi e coe(E) such that

\v*(Vo)\> II2/* II — © .

For some i we must have \y*(yi) \ > \\y* || — e. Conversely, if yoe S,
but yQ£coe(E), the separation theorem [3, p. 417] yields a functional
yf such that

|| y* || ^ Re y*(y,) > sup {Re y*(y): y e

Since coe(E) is equilibrated, we have

lls/o* II > s u p I 2/o*(2/) I .

THEOREM 1.2. Lei ϊ1: X—•» F6β linear and continuous. Suppose
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there exists a set E cz Y and constants k < 1 and K such that
( 1 ) coe(E) contains the closed unit ball S of Y.
(2 ) For each y e E there exists an xe X such that

II Tx-y\\ ^ k, \\x\\ ^ K.

Then TX^ Y. If T is one to one, \\ T~λ || ^ K(l - ft)-1.

Proof. For any y* e Y* and yeE, select x by (2) and note

\y*(v)\£\v*(y- Tx)\ + \y*(Tχ)\
^k\\y*\\ + \(T*y*)(x)\

^ ft || 2/* II + K\\T*y*\\ .

Taking sups on y in E yields

by Lemma 1. Thus

\\T*y*\\^K-1(l-k)\\y*\\,y*eY*,

showing I7*, and hence T has a closed range [3, p. 488], However
the argument above shows TX is dense in F, since if y*(TX) — 0t

y*^Q, then

l l / * ( l / ) | ^ f t | | 2 / * | | < \ \ y * \ \ , y e E ,

in contradiction of Lemma 1.1. The result now follows.
Theorem 1.2 is due to Katznelson [11] in slightly different form.

He constructs a solution of Tx = y by successive approximations. The
proof above follows an argument of Rudin to prove a theorem on Helson
sets [15, p. 116], (Corollary 1.3 below) which is a special case of
Theorem 1.1. Recall that if G is a locally compact abelian group, a
compact set P c G is a Helson set if each continuous function on P is
the restriction /1 P of the Fourier transform of an element of Lt on
the dual group Γ.

COROLLARY 1.3. Suppose P is compact in G and there exist
constants k < 1 and K such that to each Fe C(P) with \F(t) | = 1,
t e P, there corresponds an element fe Lλ{Γ) such that \\f\\ι ^ K and

p
tep

Then P is a Helson set.

Proof. Define T: LX{Γ) -> C(P) by Tf = /1 P. The extreme points
of the unit ball S in C(P) are precisely the functions of absolute value
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one. Lemma 1.1 and Lemma 5.5.1 of [15] show S is the norm closed
convex hull of its set of extreme points. The result now follows
directly from Theorem 1.2.

We next consider the case that Y is CQ(Ω), the continuous func-
tions vanishing at infinity on a locally compact Hausdorff space. A
subset E of C0(Ω) is a normal family if for each pair Fu and F2 of
disjoint compact sets in Ω there exists fe E with /(i<\) = 0, f(F2) = 1.
We denote the nonnegative functions in the closed unit ball S of C0(Ω)
by S+.

LEMMA 1.4. If E is a bounded normal family, then co(E) contains

Proof. It suffices to approximate any element / of S+ having
compact support by elements of co(E). Let n be any positive integer
and L — sup {||/||: / e E}. Let C be a compact set whose interior
contains the support of /. Define

n

eC:/(α>)^Anl\ k = 1, 2, , n - 1 .

n )

Choose /, e E with

UU,) - 1 , fm - 0 .
Let W1 = {ω$ C: \fι(ω) \ ̂  Ijn1}. Then Wι is compact. Choose / 2 e E
with

= l , / 2 (F 2 U W1) = 0.

Let Wi = {(ύg C: |/2(<w) | S 1/w2}, etc. Continuing, we finally obtain
Λ_! e E with

= 0 , fl)6 7 , . 1 u W 1 U U ^ κ _ 2 .

Define the function g - l/n^t=lfk. We estimate | | / - ( / | U . Note
that

n

Now f(ω) = 0, ω $ C, the sets T7< are disjoint and compact, and

n
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If ωe Wit

Thus

n j=ι n n

and we have proved

ί| f _ /y II < A_±_l
II / y ||o = —

n

Now h = n(n — I)" 1 g e co(E). Since n is arbitrary, the result follows.

THEOREM 1.5. Let Ω be locally compact and T: X—> C0(Ω) be linear
and continuous. Suppose there exist constants ε < 1/4 and M such
that if Fx and F2 are any disjoint compact sets in Ω, these exists an
x e X such that

( i ) | ( T a O ( ω ) | ^ e , ωeF,
(ii) \(Tx)(ω) - l | ^ e , ωeF2

(iii) | | t t | | ^M.
Then Γ X = C0(Ω). If T is one-to-one then \\ T~' \\ ̂  4M(1 - 4s)-1.

Proof. Let ε < ε' < 1/4 and E be any bounded normal family in
CQ(Ω). If Ft and F2 are any disjoint compact sets, we can find x e X
with

|| x || ^ M, I (TxXFJ - 11 ^ ε, I (Tx)(F2) \ ̂ e , and fe E with

/(FJ = 1 , f(Ft) = 0 .

Since C(F1 U Fs) is isometrically isomorphic with the quotient of C0(Ω)
by the ideal of functions zero on Fλ{j F2, we can select gf e C0(Ω) with

2) = Q and

\\Tx-(f+gf)\\^e' .

Then £" — {/+ gf:feE} is a bounded normal family, ~co{Ef)Ώ.S+ by

Lemma 1.4, and hence coβ(4£") D S. For each ^e 4£" we can find an

x with

|| Γa? - flr|| ^ 4ε', ||α?|| ^ 4Λf.

Theorem 1.5 now follows from Theorem 1.2.
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REMARK. Often in applications it is just as convenient to verify
that for each compact set F c Ω and fe C(F) there exists x e X
satisfying \\x\\ ^ M and || Tx — /{{„ ^ ε ||/||oo. This of course implies
the condition of Theorem 1.5.

If TX satisfies (i, ii) we shall call TX an ε-normal family. If
(iii) is satisfied we call TX boundedly e-normal. If TX is ε-normal
and for each ωe Ω (iii) holds when Fu F2 belong to a suitably small
compact neighborhood of ω, then we call TX locally bounded. Note
that Theorem 1.5 yields:

COROLLARY 1.6. // Ω is compact and TX is e-normal and locally
bounded, there exist finitely many compact sets Su , Sn whose
interiors cover Ω and such that TX\ Si = C(Si).

COROLLARY 1.7. If Ω is compact and totally disconnected and 2JΪ
is a linear subspace of C(Ω) which is ε-normal for e < 1/4, then 3Ji
is dense in C(Ω).

Proof. Let X be the closure of 2Jέ in the sup-norm and T be
the natural injection map of X into C(Ω). Since Fx and F2 may be
enclosed in disjoint open and closed sets having Ω as their union condi-
tion (iii) of Theorem 1.5 is satisfied with M = 1 + e.

It is important to note in the absence of boundedness 1.4 and 1.5
are false. The recent example of McKissick [13] of a sup-norm closed
normal function algebra which is not C(Ω) provides a counter example.

We note in passing that if Ω is compact and ω e Ω, then TX — C(Ω)
if and only if (TX)ω = C0(Ω ~ {ω}), where for a linear subspace
2Ji c C(fl), 3Jiω = {fe C(Ω): f(ω) = 0}. Also, as shown by Seever [16],
TX = C(Ω) if and only if for each measure μ on Ω, the restriction of
TX to the carrier of μ is all continuous function on the carrier.

2* We now specialize to the situation when X is a Banach algebra
of continuous functions vanishing at oo on Ω. In this case we shall
write SI for X. Then of course | x(ω) | ^ \\x\\ for x e SI. Hence
|| x I|oo S \\x\\ and the embedding of SI into C0(Ω) is continuous. Also
if an algebra is ε-normal for some ε < 1/2, it is ε-normal for every
such ε. This is clear since the function / defined by

f(z) = 0 , \z\Se
= 1 , | l - * | ^ e

can be uniformly approximated on these sets by polynomials without
constant term. Indeed, a condition equivalent to ε-normality for
algebras is the following: For each pair of disjoint compact sets So, SΊ
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of Ω, there exists an x e SI and disjoint open sets Vo, V1 of complex
numbers such that x(S1) c Vi9 and C ~ (Vo U Vx) is connected and
contains the origin.

That this is equivalent to ε-normality is easily seen. If ε < 1/6
and I x(S0) | ^ ε, 11 - x(Si) | ^ e, 11 - y(S0) \ S ε, and | y{Sx) | g ε, then
2x + y has the desired property. For the converse note that without
loss of generality we may assume that Vo Π V1~ 0 . Let W be an
open neighborhood of 0 satisfying Wa Wa C ~ (Vo U Vλ) and such
that C ~ (Vo U ^ U W) is connected. Then by the theorem of Mergel-
yan, the function / defined by f(V0 U W) = 0, /(T^) = 1 may be

uniformly approximated on V0[J V1[j W by polynomials p(z). Since
these polynomials may be taken to have no constant term, if #(£*) c Vif

i = 1, 2; then pn(x) e SI, | pn(x)(S0) | < ε, and 11 - p^x^S,) \ < ε.
Suppose now Ω is compact and the ε-normal Banach subalgebra of

C(Ω) is locally bounded. Then by Corollary 1.6 there exist finitely
many compact sets Su , SΛ whose interiors cover Ω such that
SI I Si = C(Si). We shall prove 31 = C(Ω). Incidentally the ability to
match each continuous function on the sets of a covering is not
sufficient to prove 31 = C(Ω) without the assumption of ε-normality.
To see this let

31 = {x G L: x(n) = x{— n)} .

For 31 restricted to the negative or to the nonnegative integers yields
all bounded sequences on these sets, but SI Φ L. We begin with the
following

THEOREM 2.1. Let Ω be a compact Hausdorff space and SI be an
e-normal Banach subalgebra of C(Ω). Suppose there exists a finite
covering of Ω by open sets Ui such that 311 Ό{ — C(Ui). Then 31 = C(Ω).

Proof. We first make a definition.
Let Uu •••, Un be an open covering of a topological space. An

ε-partition of unity subordinate to this covering is a set of continuous
functions fl9 , fn such that

/l + + /n = 1

LEMMA 2.2. Let 31 satisfy the hypothesis of Theorem 2.1. Then
for each ε > 0 SI contains an ε-partition of unity subordinate to the
given covering.

Proof. We observe first the following identity for complex numbers
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(#) ΠU-λ,) = 1- - λ,

which is easily proved by induction. Next we assert that if U is one
of the open sets Uiy then there is a constant M such that for each
compact set S c; U and ε > 0 there exists x e SI satisfying | x(ω) | ^ ε
off U, x(S) — 1 and || x ||oo Ŝ M. To prove this, note that by the closed
graph theorem there is a constant C such that if feC(U), then /
may be chosen in SI satisfying

f — f on U , and

Let 0 < ε < 1/2. Pick h e SI satisfying

1 1 - h(ω) I ̂  ε ω e S
I h(ω) I ^ ε ωίU.

Let T = {α>: | h(ω) | ^ 1/2}. By the Tietze extension theorem there
exists g eC(U) satisfying g(ω) = h^iω), ωe T,

IIJ7II-5*2.

Therefore if g e 31, g = g on U, and || ^ || ^ 2C, we may take x — gh.
Then I x(Ω ~ U)\ ^ 2Cε, x(Γ) = 1, and || x {{„ ^ C.

Now select open sets Vi9 ί = 1, , w, covering β and satisfying
F< c Vi c C/i. Choose /Λ, , / e SI in turn such that

I Λ(ω) I ̂  εfc off ί7fc

/fc(ω) = 1 on Ffc

where εw = ε, ek = ε || Π?+i (1 — ,/*) || ~"1, & = X, , n — 1. Let xk —
fie Πϊ + i (1 - Λ); ^ e 31 and | xk(ω) | ^ ε off Uk. Since Πϊ=! (1 - Λ)(ω) =
= 0,α)Gβ, it follows from (#) that 1 = x, + + x%.

To finish the proof of the theorem we apply 1.2. That is, we
assert for 0 < ε < 1 there is a constant M such that for fe C(Ω),
II/I|oo ^ 1, we may choose / e S I satisfying

To do this observe that there exists a constant K and functions
fl9 ••, Λ e SI satisfying /* = / on Z7, and H/.H^iΓ. Let ^ , .. ,a?n

be the ε-partition constructed via Lemma 2.2. If / = / A + + /»#«,
then / e SI. Also | | / | | g i ί Σ?=i II ^ II which we may take for M. To
estimate H / - / I U note that if ωeUi9 then (fx, - /^)(ω) = 0. If

Uiy then

I (M - I ^ (Il/H + 11/, |U) I ^ (X + l)ε .
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Therefore

II/-/IU £ Σ11/^ - f&i lU £ n(K + i)e < l

for a suitable choice of ε. This finishes the proof.

COROLLARY 2.3. Let 21 6β an ε-normal Banach subalgebra of C(Ω),
Ω compact Hausdorff. If 21 is locally hounded then 21 = C(Ω).

We note that this corollary is a local version of the main theorem
of [12]. For, Katznelson's condition that for each closed set F of a
compact space Ω there exists an ε = ε(F) such that whenever N is
both closed and open in F, 21 contains an element h of norm one
satisfying ΐίe(x(ω)) < 0, ω e N, Ee(x(ω)) > ε, ω e F ~ N is easily seen
to be equivalent to 'bounded ε-normality\ That his condition implies
the latter is implicit in Lemma 1 of [12], and the same sort of argument
yields the converse.

Another related result is the theorem of Glicksberg [5] that if 21
is a closed separating subalgebra of C(Ω), Ω compact, containing the
constants such that the restriction to each closed subset F c Ω is a
closed subalgebra of C(F), then 21 = C{Ω). Theorem 2.2 yields a local
version of this result which is as follows.

THEOREM 2.4. Let 21 be a Banach subalgebra of C(Ω) which
strongly separates the points of Ω. Then 21 — C(Ω) if the following
two conditions are satisfied:

( i) To each pair of points ωu ω2 there exist disjoint compact
neighborhoods Nu N2 ofωu ω2 respectively such that 2ί | N^_ U N2 is closed
in CCZVΊ U AQ

(ii) Each point o) has a compact neighborhood Nω such that for
each compact set Fa Nωj 211 F is closed in C(F).

Proof. We shall apply 2.1. First note that the hypothesis of
ε-normality. in 2.1 can be weakened slightly. We need only to insist
that for disjoint nonempty compact subsets Fu F2 of Ω there exists
an x e 21 satisfying | x{F^) < ε, 11 — x(F2) \ < ε. Indeed the argument
on pp. 158-9 of [5] shows that (i) implies that for disjoint nonempty
compact sets Fu F2 of Ω there exists an x e 21 for which x{F^) — 0, and
x(F2) = 1.

To complete the proof we observe that for each ω there exists a
compact neighborhood Nω such that 2Iω is boundedly normal on Nω — {ω}.
This follows from condition (ii) by the same argument as in [5, Lemma
3], To wit: If there exist neighborhoods Z7< c Ό{ c U^ of ω{; disjoint
compact sets So><, Sui c ZZ^ — Ui such that if x{ e 2Iω, x(SQ>i) = 0,
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x(Slti) = I, then ||a;f || ^ i, the closed graph theorem implies that it
cannot be the case that §11 £7 is closed in C(F) where F — U iSOti U Slti U {&)}.
Therefore 2X | Nω ~ {ω} = C0{N ~ {ω}) and consequently % \ Nω = C(AΓω).
The result now follows from 2.2.

As an application of these techniques we consider the following
question:

Let Ω be compact as before and assume that Ω = Ω1 U Ω2, β^
compact. The example at the beginning of Section 2 shows that if
St is a Banach subalgebra of C(Ω) satisfying 211 i2̂  = C(Ω), i = 1, 2, then
it is not necessarily true that SI | Ω ~ C(Ω) even if Ωλ and Ω2 are disjoint.
If, however, 2ί is normal or even ε-normal, then the disjointness of
Ωλ and Ω2 implies 21) Ω = C(β). This is trivial in the first case and the
second is a special case of Theorem 2.2.

If Ωλ Π Ω2 Φ 0 , then it is not known whether normality of 21 is
sufficient of guarantee that 2ί = C(Ω)O In particular let 21 be the
algebra of Fourier transforms of L^Γ); and Ωu Ω2 be Helson sets in
G (cf. Section 1). It is not known whether β2 U Ω2 is a Helson set.

The following theorem shows that 21 = C(Ω) if one assumes a
certain extension property for ideals.

THEOREM 2.5. Let Ω — Ωλ U Ω2; Ω{ compact, and assume % is a

normal Banach subalgebra of C(Ω) such that 2ί | Ω{ = C{Ω^) i = 1,2.

For a closed set FczΩ, let Fζ = Ω{ Π F. Let

JF = {x e 21: x(F) == 0}, J^. - {a? e C(β,): χ{F,) - 0} .

// JF\Ωi = JF.y i = 1, 2, /or eαcft closed ŝ ^ F, then 21 =

Proof. Let us establish first the following:

LEMMA 2.6. For each (oeΩ there exists a neighborhood Nω of ω
and a constant M such that if Hu H2 are disjoint compact subsets
of Nω — {ω} and Hi Π β; = 0 , then there exists xe%ω satisfying

x(H,) = 0
x(H2) = 1

Proof. Note if there exists a neighborhood Nω 9 {co} such that
JVω Γ) Ωi = 0 for i = 1 or i — 2 there is nothing to prove. If the lemma
is false, there exists a decreasing sequence of open sets UiSω such that
Ui+ί c Ui+1 c ZTi, and disjoint closed sets HiΛ, Hi>2 with Hi}3 S C/̂  ~ ί/ί+1,
such that for each i fli^. n fl< = 0 , i = 1, 2, and if ^ e 2ίω; ^ ( ^ , 0 = 0,
^(ίί,,2) = 1 then || xi \\ ^ i. Let J5Γ = U Hitl U {ω}, and H, = HΠ Ωu

Applying the hypothesis together with the closed graph theorem, we
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see that if x e C(βx), x(H^ = 0, and || x W^ S 1, then there is an x e J3

satisfying x\Ω1 = x, and \\x\\^K. Consequently, since for each i
there exists xi e C(Ωj) satisfying Xi{H^) = 0, Xi(Hit2) = 1, || x{ IU = 1, it
follows that there exists xt e JH, \\ x{ || 5g if, satisfying ^ | ̂  = 2 .̂ This
is a contradiction.

To prove the theorem in view of the normality of δί, it suffices
to show that for each ω there exists a compact neighborhood Nω3ω
such that 5Iω | Nω = C0(iVω — {ω}). To prove the latter statement it
suffices, by the remark following lβ5, to show that there exist constants
Mu k, k < 1, such that for each compact set FaNω ~ {ω} and fe C(F),

^ 1 , there exists /G§Iω, \\f\\^Mu and | (/ - f){ω) \ S k for

Choose Nω so that 2.6 is satisfied. There exists a constant N
depending only on Ωx and β2, so that if F <^ Nω ~ {ω} and / e C(F),

^ 1, then there exist / 1 ? / 2 eSί ω such that

ΛH = f(ω), ωeFΠΩoWftW^N, i = 1, 2.

Let ikΓ be the constant of Lemma 2.6 and ε < (2ikί)~1. Let

Then ^ 0 ^ = 0 , ^ = 1,2, and H1ΠH2^0. We know by
Lemma 2.6 there exist functions ^G SIω satisfying || #* || ^ ikf and

= 0 ,
= 0 .

Let / = / A + f2x2. Then / e SIω, | | / | | ^ 2MΛΓ,
and

I (/ -/)(α>) I ^ I (/ - / O ^ x ^ ) I + I (/

3. Let us return to the situation when a Banach space X is
continuously imbedded by the linear mapping T as an ε-normal family
in C(β), Ω compact Hausdorff. As was remarked in Section 1 some
sort of boundedness condition was essential to guarantee that the
mapping was onto. We show next that an appropriate condition can
be imposed on Ω which will guarantee that T is locally bounded thus
proving that locally T must be onto. The condition we need is due
to Gillman and Henriksen [4].

DEFINITION 3.1. A compact Hausdorff space Ω is called an F-space
if disjoint open Fσ sets in Ω have disjoint closures.

The Stone spaces of complete or σ-complete Boolean algebras as
well as their closed sub-spaces have this property. If C(Ω) is an
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adjoint space, Ω is extremely disconnected, [7, Theorem 2], and is
therefore an .F-space. There are connected examples such as β(R+)~R+,
where R+ is the nonnegative reals [4].

REMARK. If Ω is a compact i^-space, a subspace M of C(Ω) which
is ε-normal for ε < 1/4 is necessarily dense in C(Ω). To prove this it
clearly suffices to show that the restriction of M to the carrier of
any measure is dense in all continuous functions on the carrier.
However, K. Hoffman and (independently) G. Seever [16] have proved
that the carrier of any measure on an i^-space is extremely disconnected.
The result now follows from Corollary 1.7. Thus in the next theorems
the hypothesis of ε-normality is no gain in generality over density.
However it is easier to verify in applications. The result of Hoffman
and Seever shows it would suffice to prove these theorems in the case
Ω is extremely disconnected and supports a measure. This observation
does not simplify the present proofs.

THEOREM 3.2. Let Ω be a compact F-space, T a continuous
imbedding of a Banach space X into C(Ω) such that TX is ε-normal
for some e < 1/4. Then there exist finitely many compact sets Slf ,
Sn whose interiors cover Ω such that

Proof. By Corollary 1.6 it suffices to prove that TX is boundedly
ε-normal in a neighborhood of each point α>0 of Ω. Since TX is dense
in C(Ω), (TX)ωQ is dense in CQ(Ω ~ {ω0}) (see [17]), and by 1.5 it
suffices to verify that (TX)ωQ is boundedly ε-normal in a deleted neigh-
borhood of ω0. Suppose, on the contrary, that there exists a sequence
of open neighborhoods Vi of ω0, Vi+1cz Vi+1cz Viy and disjoint compact
sets Fitl, Fi>2 c F , - F ^ such that if

( 1 ) I (To? - l)(α>) | < ε ωeFiΛ,

( 2 ) \(Tx)(ω)\<ε ωeFi>2,

(3) (TaOK) = 0 ,

then || x || Ξ> i. But there exist disjoint open Fσ sets GifU GiΛ containing
Fitl, Fi>2 respectively and contained in Vt ~ Vi+1. Now let G± = U iGi>ly

G2~\J iGi.z. Then Gu G2 are open Fσ sets with disjoint closures Hl9 H2

respectively. We may assume ω0 & H1 U H2. For if ω0 e H1 say, replace
Gi by G[ = U iG2ίΛ or Gϊ = U G2 i + 1 > 1 depending on whether ω0 g G[ or
ωQ$ G\. Choose xeX such that (Tx)(ωQ) = 0, |(Tx — l)(ω) | < ε, ωe H^
\(Tx)(ω) I < ε, ωeH2. Then (1) and (2) and (3) are satisfied by x, so
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I |ίc 11 = oo. This contradiction completes the proof.
Combining this with Theorem 2.1 we obtain:

THEOREM 3.3. If 31 is an e-normal Banach subalgebra of C(Ω),
Ω a compact F-space, then 31 — C(Ω).

A known special case of 3.3 is Rudin's interpolation theorem for
Sidon sets [15, Theorem 5.74], (Corollary 3.4 below). Recall that a
set B i n a discrete group Γ is a Sidon set if for each bounded function
φ on E there exists a measure μ on the dual group G satisfying
μ(y) — φ(i). The restriction of μ to E defines a mapping T of M(G)
into 14E) = C(βE). Since βE is an F space, (c.f. [41 p. 369), an
application of 3.3 yields the following.

COROLLARY 3.4. If G is a compact group with dual group Γ,
then E c Γ is a Sidon set if for each function φ satisfying φ(y) — ± 1,
7 e E] there exists a measure μ on G satisfying

sup I μ(i) - φ{i) I < 1 .
yeε

A similar statement can be made for interpolating sequences for
bounded analytic functions. Following Hoffman [9], call E = {zn} §
{\z\ < 1} an interpolating sequence if for each bounded function φ on
E there exists a bounded analytic function on the open unit disc such
that

f(zn) = φ(zn) , zn e E .

Again the restriction of φ to E defines a mapping T of the bounded
analytic functions into L = C(βN). Since βN is an F space, Theorem
3.3 yields the following extension of a result of Hayman [8] (see also
Hoffman [9, p. 205]).

COROLLARY 3.5. A sequence E in the open unit disc is an in-
terpolating sequence if for each function φ on E such that φ2 — φ
there exists a bounded analytic function f satisfying

The intrinsic condition that E be an interpolating sequence, proved
by Carleson [2], is that

Π A ς i ^δ>0 k = 1,2, . . .
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To prove Carleson's theorem by the methods discussed here it would
suffice to produce for each subset E1 c E a bounded analytic function
vanishing on E1 such that f(E ~ £Ί) is contained in a compact set not
containing the origin and having connected complement. If the sequence
E is real this can be accomplished by the Blaschke product having Eλ

as its set of zeroes. Whether the Blaschke products provide this
separation in the general case is not known. In view of the known
behavior of these functions on the boundary of the unit disc, this is
perhaps too much to expect.

COROLLARY 3.6. If SI is a Banach subalgebra of C(Ω), Ω a compact
F space, then 31 = C(Ω) if for each pair of points ωu co2 there exists
an x e 31 which vanishes in a neighborhood of o)1 and equals one in
a neighborhood of ω2.

Proof. As in the proof of 2.4. the condition implies that for each
pair of disjoint nonempty compact subsets Fl9 F2 there exists an x e SI
satisfying x(Fx) = 0; x(F2) = 1. By 3.3 for each ωeΩ, there is a
compact neighborhood Nω of ω such that 311 Nω — C(Nω). An applica-
tion of 2.1 complete^ the proof.

One should not expect that the condition of 3.6 can be substantially
weakened. For recently Hoffman and Ramsey [10] have shown that
if one assumes the continuum hypothesis then separating closed subal-
gebras of l^ exist in great abundance.

4* This final section contains some results and examples concerned
with the problem of extending Theorem 3.2. In an earlier version of
the manuscript we had conjectured that if Ω is a compact .F-space
and T: X —> C(Ω) is a continuous linear map of a Banach space with
dense range, then TX = C(Ω). We are grateful to J. Lindenstrauss
for the following elegant counterexample to this conjecture:

There exists a continuous linear map Φ from Loo(0,1) onto l2, since
Li(0,1) contains a subspace isomorphic to ϊ2 (e.g. the subspace generated
by the Rademacher functions). Let {en},n = 1,2, •••, be an ortho-
normal basis in l2 and En = sp{e{, , en}. Let Xn — Φ"\E^ and let
X be the Banach space of all sequences x = {xn}, with xn e Xn and
i| x || = sup \\xn\\ < co, Let T: X-+ 1^(0, 1) be defined by

n

Tx = T({xn}) = Σ -Ϊ2- .
n=i n\

Then Loo(0,1) is a space C(Ω), where Ω is stonian, and TX is dense
in Loo(0,1) as it contains \j~=1Xn. Also TX is not the whole of 1/^(0,1),
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since if there were an x ~ {xn} in X such that

»=i nl w=i n

then one must have

Σ —
n=iϊ+ι n I I

in l2, for N = 1, 2, , as Φ(α?w) e En. Since sup || <P(α?Λ) || < °°, we

obtain the desired contradiction.
We know of two cases one can conclude that TX = C(Ω) under

additional hypotheses. G. Seever [16] has proved that TX = C(Ω) if
TX is normal on Ω. We shall give a new proof.

THEOREM 4.1. (Seever) Let Ω be a compact F-space and T: X—>
C(β) δe a continuous linear map of a Banach space such that TX
is normal on Ω. Then TX — C(Ω).

By earlier remarks one can suppose that Ω is totally disconnected.
Seever proves that if TX is normal on β, T*: C(Ω)* —> X* has a closed
range. This fact rests on a uniform boundedness theorem for measures
on totally disconnected .F-spaces which is derived from a theorem of
R.S. Phillips [15, p. 525] on convergence of finitely additive measures
on the subsets of the integers. Since TX is dense in C(Ω) and has
a closed range it follows that TX = C(Ω). The proof we shall give
also relies on Seever's reduction to the case that Ω is totally discon-
nected. The necessary element of uniformity is supplied by the follow-
ing lemma.

LEMMA 4.2. Let Ω be a totally disconnected F-space and TX be
normal on Ω. For each point ωoe Ω there exists an open and closed
neighborhood V and constant K such that if Ex and E2 are any
disjoint compact and open subsets of V ~ {o)0}, one can find x e X
such that

(Tx)(E1) = l , (Tx)(EJ = 0, (Tx)(V') = 0,
(Tx)(ωQ) = 0, \\x\\£K.

Proof. Suppose the lemma is false. If Wι is an open and closed
neighborhood of ω0, there exist disjoint compact and open subsets E1U

E12 of W1 - {ω0} such that if x e X and (Tx)(En) = 1, (Tx)(E12 U Wl) = 0,
(Tx)(ωQ) = 0, then \\x\\ ^ 2 . Let kE denote the characteristic function
of a set E. Using the assumption of normality, select xx e X such
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that Tx, = kEll, and let W2 be an open and closed neighborhood of ω0

with I f 2 c Wx ~ (En U E12). Proceeding inductively we construct de-
creasing open and closed neighborhoods Wn of ω0 and disjoint open
and closed subsets EnU En2 of Wn ~ Wn+1 and elements xneX such
that if

(#) (Tx)(Enl) = 1, (Tx)(En2 U Wi) = 0, (Γa?)(ω0) - 0 ,

then

Note that

Since Ω is an F-space, there exists an open and closed set Fo such that

Then

for o)G UΓ=iW7. By dropping, if necessary, to the subsequences for n
even or n odd we can suppose ωQ $ FQ. Choose x0 with Tx0 = kFo and define
zn = %o - Σ?=ί«< Then Γ«n satisfies (#), so || ^ || ^ 2% + X& 11| χ \\. This
implies || x0 \\ ̂  2%, ^ = 1, 2, , which is the required contradiction.
It follows now by the arguments of Theorem 1.5 that TX contains
all continuous functions which vanish outside of V. A covering argu-
ment completes the proof of Theorem 4.1.

One also has TX = C(Ω) is the special case that X is a conjugate
space, C(Ω) is l^ and T is weak star continuous. This theorem is
essentially an unpublished result of Beurling.

THEOREM 4,3. (Beurling) Let S be an arbitrary set and X be a
Banach space. If T: k(S) —> X is linear and continuous and T*: X* —*
L(S) has dense range then T*X* = L(S).

Proof. The density of T*X* shows T is one to one. We prove
that T-1 is bounded, so T and hence T* has a closed range. If T~x

is not bounded we can find a sequence {ζn} of elements of l^S) of
norm one such that Tξn converges to zero. Thus

(T*x*)(ζn) = Σ f (s)(Γ*a?*)(s) — 0 , x* 6 X* ,
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as n—> co. Since T*X* is dense in L(S), {ξn} converges weakly to
zero. But then {ζn} converges strongly to zero ([3], p. 295), giving
the desired contradiction.

In a seminar in 1960 Beurling gave a proof (unpublished) of the
following theorem equivalent to the result of Rudin (Corollary 3.4)
for the case of the circle group.

THEOREM 4.4. Let {%} be a sequence of integers, and suppose
that for each ε > 0 and {αj in l^ there is a measure με on the circle
Γ such that

\με{n5) -aj\<ε , j = 1, 2, . . .

Then for each {oίj} e l^ there exists a measure μ such that μ{n5) = ah

Helson observed that the essential argument of Beurling's proof
gave a proof of 4.3. On the other hand, to prove Theorem 4.4 from
4.3 one defines T({ξn}) = Σ~=i f ^ V . Then T:lx^C(Γ), Γ the unit
circle, and T*(C(Γ)*) is dense in L, so the restrictions of the Fourier
transforms of measures must yield all bounded sequences. One may
also base a proof of Corollary 3.5 on Theorem 4.2.

Finally we give an example of a compact Hausdorff space Γ,
which is not an i^-space, and a continuous map T:X—+C(Γ) such
that TX is dense and normal on Γ and enjoys the local matching
property of Theorem 3.2, yet for which TX Φ C(Γ). This example is
due to Y. Katznelson. We denote the n-th Fourier coefficient of a
continuous function x on the unit circle Γ by xn. Let X be the sub-
space of C(Γ) for which Σ«=-~ I ^ + i I < °°. We may write X = Y@Z,
where

fc.+i = O, n = 0, ±1, ±2, •••}

Z= LeC(Γ):z2n = 0 , n = 0, ± 1 , ± 2 , , Σ I «i»+i I <=<=}.
I. w=—oo J

For a? = y + 2 define

| | α | | = sup|i/(ί) | + Σ I «2»+i I .

Then ΓX is a dense and normal subspace of C(Γ) complete in this
norm. If / is any continuous function defined on an arc of length
less than π, we may construct a continuous function y of period π
and hence in Y9 which extends /. Thus if T is the injection map of
Xinto C(Γ), Γ is covered by closed arcs Su S2, S3 such that TX\S{ = C(Si)
but TXΦ C(Γ).
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