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Let X be a Banach space and T a closed linear operator
with range and domain in X. Let a(T) and δ(T) denote,
respectively, the lengths of the chains of null spaces N(TK) and
ranges R(TK) of the iterates of T. The Riesz region %ϊτ of
an operator T is defined as the set of λ such that a(T — λ) and
δ(T — X) are finite. The Fredholm region %τ is defined as the
set of λ such that n{T- λ) and d(T-λ) are finite, n(T) denoting
the dimension of N(T) and d(T) the codimension of R(T).
It is shown that %τ Π Sr is an open set on the components of
which a{T — λ) and δ(T — λ) are equal, when T is densely
defined, with common value constant except at isolated points.
Moreover, under certain other conditions, $tτ is shown to be
open. Finally, some information about the nature of these
conditions is obtained.

Let X denote an arbitrary Banach space and suppose that T is a
linear operator with domain D(T) and range R(T) in X. We shall
write N(T) for the nullspace, N(T) = {xeD(T): Tx = 0}.

Let D{Tn) = {x: x, Tx, , T^xeDiT)} and define Tn on this
domain by the equation Tnx~ T(Γ?ι~1^) where n is any positive integer
and T° — I. It is a simple matter to verify that {N(Tk)} forms an
ascending sequence of subspaces. Suppose that for some Jc, N(Tk) =
N(Tk+1); we shall then write a(T) for the smallest value of k for
which this is true, and call the integer a(T), the ascent of T. If
no such integer exists, we shall say that T has infinite ascent. In
a similar way, {R(Th)} forms a descending sequence; the smallest in-
teger for which R(Tk) = R(Tk+1) is called the descent of T and is
denoted by S(T). If no such integer exists, we shall say that T has
infinite descent.

The quantities a(T) and δ(T) were first discussed by F. Riesz [4]
in his original investigation of compact linear operators. A com-
prehensive treatment of the properties of a(T) and δ(T) can be found
in [6] pp. 271-284. The purpose of the present work is the considera-
tion of the functions α(λl — T) and δ(λl — T) for complex λ. When
no confusion can arise, we shall write these quantities as a(X) and
δ(λ) respectively.

DEFINITION. Let y\T denote the set {λ: α(λ) and δ(λ) are finite}.
We shall refer to ίRτ as the Riesz region of T.

If we write n(X) for the dimension of N(XI — T), i.e., the
nullity of λl— T and d(X) for the codimension of R(\I — Γ), i.e.,
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the defect of XI — T, then it is customary to refer to the set {λ: n(X)
and d(X) are finite} as the Fredholm region of T. We shall denote
this region by g*. It should be observed that the above is a depar-
ture from traditional notation where a and β are used for nullity and
defect, respectively.

2* Remarks* From this point onwards, we shall assume that all
operators are closed, with range and domain in X unless otherwise
stated.

1. It is well known that g^ is an open set and that n(X) — d(X) is
constant on each component of g** These facts and a great many
others are proven in papers by Gohberg and Krein [2] and by T. Kato
[3]. We shall show below that g^Π^r is always open and that 9^
is open when certain other conditions are fulfilled. However the
quantity δ(X) — a(X) need not be constant on the components of $V,
for consider operator T where D(T)ΦX; D(T)φ{0} and Tx = x for
xeD(T). Then St* is the entire complex plane C but δ(X) = 1,
a(X) = 0, when λ Φ 1; 5(1) = a(l) = 1. However, if D(T) = X, then
a(X) ~ δ(X) on SRy even in the absence of any topology in X. Proof
of this fact can be found in [6] Theorem 5.41-E. Another notable
difference between 31̂  and %? is seen from the theorem proven in
[2]: if B(X) denotes the space of bounded linear operators defined on
X and %v = C, then X is finite dimensional. It is clear that no such
restriction applies to St*; indeed % = C.

2. If we adopt the usual notation of p(T), Pσ(T), Cσ(T) and
Rσ(T) for the resolvent set, point spectrum, continuous spectrum
and residual spectrum respectively as given in [6], then it is known
that for TeB(X), δ(X) = oo if \eCσ(T)[jRσ(T). This is proven in
[1], Hence 91? consists of ρ(T) and possibly some elements of the
point spectrum.

3* Some preliminary lemmas*

LEMMA 1. For any non negative integer k
(i) n(Tk) ^ a(T)n(T)
(ii)

Proof, (i) We firstly observe that a(T) = 0 if and only iίn(T) = 0.
Hence the product a(T)n(T) is well defined. We need only consider
the case where both a(T) and n(T) are finite. Let a(T) = p. Then
n(Tk) g n(Tp) for any k and if we show n(Tk) g kn(T) for every
nonnegative integer k, the result will follow. We proceed by indue-



OPERATORS WITH FINITE ASCENT AND DESCENT 439

tion; clearly for k — 1, n(Tk) <£ kn(T). Suppose we have shown its
validity for 1 ^ k ^ s. Then we can complete the proof by showing

(1) n(Ts+1) -n(Ts) ^ n{T) .

Let N(TS+1) = N(TS) © Y. Choose ^ , x2, , xr linearly independent
in Y. Then these elements lie in N(TS+1) so that Tsx{(i = 1, 2, , r)
lie in iV(T). But Σ L i ^ T * ^ = 0 implies TβΣi=i(Cί&*) = 0 which would
mean that Σ =iCχ%i e N(TS)Γ)Y. Therefore all c{ must be zero. Hence
the elements {TsXι: i = 1, 2, , r} are linearly independent in N(T).
This implies the validity of (1) and completes the proof.

(ii) Again, since S(T) is zero if and only if d(T) is zero, the
product δ(T)d(T) is well defined and we need only consider the case
when δ(T) and d(T) are finite. Again it suffices to prove that for
each positive integer k,

( 2 ) d(Tk) ^ kd(T) .

Clearly (2) is valid for k = 1; suppose we have shown its validity
for B H s , Let R(Ts+ί) φY= R{TS) and take yu y2, . . . , yr

linearly independent in Y. Then these element belong to R(TS) so
that there exist xl9 x2, ,xr in D(TS) such that yt = Γ s ^ , i = 1,

Suppose now we write X = R(T) Q) Z so that we can write
Xi = Tx\ + Zi for some x\ e D(T) and z{e Z, i = 1, 2, , r. Then
{̂ J is a linearly independent set; for if XLiC^ = 0 thenΣ<=iCiΓ% = 0 so
that ZUCiTs

Xl = Σ ί = Λ Γ +1a?i i. e.,

( 3 ) Σ ^ * = Σ c 4 Γ +1aj;.

But the left side of (3) lies in Y, the right side in R(Ta+1). Hence
r

ΣiCiVi — 0. Hence each c< is zero. This means that dim 7 g dim ^

so that
1) - d(Ts) ^

and hence (2) is valid for k = s + 1. This completes the proof of (ii).

LEMMA 2. / / λ e Sΐ̂  Π §v αmZ T is densely defined, then n(λ) = d(X)
and a(K) = d(X).

Proof. Without loss of generality, assume λ = 0. Then, writing
κ(A) = d(A) — n(A) for any operator A, we can use Theorem 2.1 of
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[2] to write

( 4) tc(AB) = fc(A) + ιc(B)

where A, B are operators in X with finite nullities and defects. As
remarked at the end of the proof of the theorem cited, (4) is valid
in all cases where A, B act from one Banach space to another, the
product AB has a sense, and A is densely defined. Moreover AB
has finite nullity and defect. In our case, we can write

(5) κ(T') = pκ(T)

by induction from (4), for any positive integer p. Hence setting
p = k, k + 1 and subtracting we get

( 6 ) [n(Tk+1) - n(Tk)] - [d(Tk+1) - d(Tk)] = n(T) - d(T) .

On account of Lemma 1, all quantities involved are finite. Choose k
greater than a(T) and δ(T); then left side of (6) reduces to zero and
hence n{T) = d(T). Finally, we can write

( 7) n(Tk+1) - n(Tk) = d(Tk+1) - d(Tk)

which makes it clear that a(T) = δ(T).

4* Definitions* Suppose that the norm in X is denoted by || ||
and that we introduce a new norm into D(T) by setting \x\ = \\x\\ +
|| Tx ||. Then, as first shown in [5], D(T) is closed with respect to | |
and can therefore be regarded as a Banach space. T is then a closed
operator defined on all of a Banach space so that, by the closed graph
theorem, T is bounded i. e., there exists k such that \\Tx\\ S k\x\
for each xeD(T). We shall write | T \ to denote the infimum of such
k. If S is another closed operator with D(S) 3 D(T), then the re-
striction of S to D(T) can also be regarded as a bounded operator with
bound denoted by | S |.

Following [3], we define a quantity y(T) as the supremum of all
λ which satisfy Xd(x, N(T)) £ \\ Tx \\ for all xeD(T).

5* Consideration of SH^Πf?*. Let λ0 be a point in 3̂
without loss of generality, we may assume λ0 = 0. We define the
following positive number:

7(T) if p = 1

in — j(T) if p > 1 .

For each p9 we know from [3], Lemma 341, that Tp is a closed
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operator so that we can make D(TP) into a Banach space Xp by
introducing the norm | x \{p) = || x || + || Tpx ||. Then for i = 0,1, ,
p, we can consider the restrictions of Ti to Xp. Such restrictions
being obviously closed operators, it follows from the closed graph
theorem that they are bounded as operators from Xp to X. Write
I Tί \{p) to denote the respective bounds of these operators.

Define

r, = 1 +
y(T')

[1 + 7(T')] max I T<
- 1 .

Finally, if a0 = a(T), n0 = n(T), δ0 = δ(Γ) write

JΓ = min min (r^, Rp) .

T H E O R E M 1. ^ n ^ i>s a n °Pen se^ indeed, if we take λ = 0 a s

a point of ϊ t ^ n % τ , then the interior of the circle \X\ — Γ lies in

3ΐ* n g*.

Proo/. By [3] Theorem 1, inside the circle | λ | = y(T), T - λ
is a closed linear operator, w(Γ — λ) ^ w(Γ) and R(T — λ) is closed.
Moreover, we claim that inside the circle | λ | = Rp, (T — λ)p — Tp is
a closed operator.

( 8 ) For
K=QL V

if p > 1, and if we write Tκ—T[ 1 — exp 2πKi
V

the is a

closed operator with finite nullity.
Also

= inf
Tκx

d(x,N(Tκ))
— exp

2πKi

p

V

Ί{T) =

Hence, if | λ | <JBP, then each factor in (8) is a closed linear operator
with finite nullity so that by [3] Lemma 341, (T - X)p -Tp is closed
in this circle. Since the domain of this operator is D(TP), we can
write

ΐ=0 \ %

^ [(1 + I λ I )p - 1] max | Γ*
,,,
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If I X I < rp, this shows t h a t | (T - X)p - Tp \{p) ^

By [3], Theorem la , if | λ | < min (rp, Rp), then

n[(T - X)p] ^ n(T*)

( 9 ) d[(T -X)p] ^ d(Tp)

κ[(T - X)p] = fc(Tp)

for #> > 1.
Observe that (9) also holds for p = 1; for we can apply [3] Theorem
1 directly to T and - XI.

Now, if I λ I < Γ,

n[(T - λ)p ^ w(Γ*) 1 ^ p ^ tfowo + 1

^ aonQ by Lemma 1 .

Hence n[(T — λ)p] cannot be strictly increasing for 1 ^ p g αo^o + 1;
thus α(λ) ^ αo^o.

Finally, from (9), we can write

n[(T - X)κ] - d[(T - X)κ] = ^(T^) - d(T)κ

n[(T - X)κ+1] - d[(T - X)κ+ι] = n(Tκ+1) - d(Tκ+i)

with i ί = aQn0 + δ0. Now aonQ + δ0 exceeds both aQ and δ0 and since
all quantities involved in the above equalities are finite by Lemma 1,
we get

d[(T - X)κ+1] = d[(T - X)κ]

i. e., δ(X) g aonQ + δ0 in the circle | X \ < Γ.

LEMMA 3. (This is essentially [2], Lemma 3.1 in a slightly more
general setting.)

Let T be an operator with 0 e g^ and let S be an operator with
D(S)SD(T). Then if \ S \ is defined by the norm \\x\\ + || Tx || on
D(T), there exists ε > 0 such that n(T + S) is constant for
0 < I S \< e.

Proof. The original formulation of this Lemma considers A, B
operators with domains in Banach space B1 and ranges in Banach
space B2; 0 e %Λ and B is a bounded linear operator. The conclusion
is that there exists ε > 0 such that n(A — XB) is constant for
0 < I λ I < ε.

In our case, take Bx to be D(T) with the norm | x | = || x \\ + || Tx \\
and B2 = X, A = T. US is the restriction of S to Bu so that S is
a bounded operator, take B = — S/ | S\. Then we can conclude that
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there exists ε > 0 such that n(T + λS/| S |) is constant for 0 < | λ | < ε.
In particular, if 0 < | S \ < ε, then n(T + S) is constant.

THEOREM 2. Let Ω be a component of St* Π g^ where T is densely
defined. Then a(X) and δ(X) will be equal on Ω (by Lemma 2) and the
common value is constant except at isolated points.

Proof. Let K be a positive integer. Then by Lemma 1,
n[(T — X)κ] is finite in Ω. Let nκ = min Ωn[(T — X)κ] and suppose
ri[(T — λ0)*] = nκ and n[(T — λj*] > nκ. Join X1 to λ0 by a curve
/ ^ lying in Ω. We now apply Lemma 3 to the operators A = (Γ — λ)*7

5 = ( T - μ - λ ) * - (Γ - λ)* for any point λ on Γκ. Then n[{T-μ-X)κ]
is constant f or 0 < | B | < ε and since \B\ is a continuous function of
μ, we get a deleted neighbourhood of X in which w[(T — μ)κ] is con-
stant. The compactness of Γκ enables us to deduce in the usual way
that there exists an open set Uκ containing Γκ such that n[(T — λ)*]
is constant for λ e Uκ except at a finite number of points. In parti-
cular, relations (9) imply that in some neighbourhood of λ0, n[(T — λ)*]
takes a constant value nκ. Hence in UKi n[(T — X)κ] = nκ except at a
finite number of points. In particulaϊ, in some deleted neighbourhood
of Xu n[(T - X)κ] = nκ. Thus on Ω, n[(T - λ)*] = nκ except at
isolated points. Let the set of exceptional points be denoted Ωκ. Choose
λ* with the property that λ* ί Ωκ for all K. This can be done simply by
taking any line segment I in Ω and choosing λ* to be any points of
I - \JΐΩκ. Let α(λ*) = α* and δ(λ*) = δ*. By Lemma 2, α* = δ*.
Consider λ e f i - \Jl+a*Ωκ. Then n[(T - λ) ' ] = n[(T - λ*)η for each
k, 1 ^ Λ ̂  1 + a*. Hence α(λ) = α* and by Lemma 2, δ(λ) = δ* for
λ e f l - \J\+a*Ωκ.

COROLLARY. If Ω Π p(T)Φ<Z, then Ω n σ(T) consists of poles of
the resolvent Rλ{T).

Proof. Since p(T) is an open set in which a(X) = δ(X) = 0, α(λ)
and 5(λ) must be zero on Ω except at isolated points. It is known
that such a point λ0 is a pole of Rλ(T) if R[(T - λo)

α(λ°>] is closed.
But (T — λo)

α(λo) has finite codimension by Lemma 1 and hence, by [3]
Lemma 332, closed range.

6* Consideration of ?RT.

THEOREM 3. Let T be a closed linear operator such that a(T) ~
p < oo. Suppose that there exists ε > 0 such that if \ X \ < ε, then
it is possible to write
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(10) X=N[(T-X)P]®S(X)

in such a manner that

(li) S(x) n D(τp+l) = s(0) n

Then if R(TP+1) is closed, there exists p > 0 such that a(X) ^ α
for \X\<ρ.

Proof. Write S(0) = S and define D = Sf]D(Tp+1). Let Γ, be
the restriction of Tp+1 to D. We first show that

N(T*+1) = N(T*)®N(TP) .

Suppose a; G N(TP) Π # ( 7 , ) ; then

α G JVXΓ*) Π .DίΓ,) = N(TP) f]Sf] D(Tp+1) ={0}

by (10). Hence N(T*)QN(TP) is well defined. Now let xeN(T*+ι).
By (10), we can write x = xx + x2 with x^NiT?) and X2G S. Now
«, = » - » ! € N(T*+1) n S g ΰ , and 7 > 2 = Γ*+Ia?2 - 0. Hence N(T*>+1) =

We next verify that E(TP) = R(TP+1). It is obvious that
QR(Tp+1). Suppose then that xeR(T*+1); then & = T ^ for

some i/ G D(TP+1). Use (10) again to write 2/ = yt + y2 with ^ e N(TP),
y2eS. Then Tp+1y = Tp+1y2 and since y2e S C) D(TP+1), we have
x = T*+1!fc = Γ,7/2. Hence R(TP) - R(TP+1).

If we now repeat the same arguments replacing T by Γ — λ we
obtain an operator Γp(λ) with domain S(λ) (Ί i?[(Γ — λ)], range equal
to R[(T - X)p+1] such that

N[(T - λ)*+1] = N[(T - λ ) ' ] 0 N [ Γ p ( λ ) ] .

Now by assumption, N(TP) = {0} and Γp has closed range. Hence
Γ"1 can be considered as a bounded linear operator on R(TP); hence
there exists m > 0 such that || T ^ || ^ m\x\ for all xeD(Tp) where
I x I is defined, as in §4, by | x \ = |] a? || + || Tp^ ||. For | λ | < ε,
D[TP(X)] = D(TP) so that TP(X) - Tp is defined on D(ΓP) and has
bound I TP(X) — Tp \ where

x li +
: xeD(T,),χΦθ\

II x II + II ||
= I (Γ - λ) p + 1 - T3""1"11(3)+1) where | |(J)+1) is defined in

the proof of Theorem 1

^ (I T |(p+1) + i λ | ) " + 1 - i T |f+Λ,.
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Let λ be chosen such that | λ | < ε and (| T \{p+1) + | λ | )*+1 - | T |f+Λ) <
m/3. Then

|| T,(\)x || - || T,x + [Γ,(λ) - Tp]x || ^ || Tpx || - || [Γp(λ) - T9]x \\

^m\x\ -HL \x\ = — | x | for xeD[Tp(\)] .
3 3

Hence N[TP(X)] = {0} so that α(λ) ^ a(T) if | λ | is suitably chosen;
in fact, if I λ | < ε and | λ ( < [| T If+i, + m/S]1"*™ - \ T |{p+1). This
concludes the proof.

6Λ We shall assume from now on that T and all its iterates
are densely defined. Then T has an adjoint T* defined in the space
X* of bounded linear functionals on X. We shall write ζxf x*y to
denote the value of functional x* at x.

DEFINITION. Operator A is said to be an extension of operator B
if D(A)^D(B) and Ax = Bx for xeD(B). If Z>(A) can be written
as D(A) = Z)(i?)© y where 7 is a subspace of dimension k, then we
call A a k-dίmensional extension of 5 and write [A: J5] = k.

LEMMA 4. (Tκ)* is an extension of (T*)κ for any positive in-
teger K.

Proof. The lemma is trivial for K — 1; suppose it has been
verified for K ^ p. Let x* eD[(T*)*+1]. Then x*eD[(T*)*] and
(T*)*α*eD(T*). Hence for any xeD(T*>+1), we can write

= < ϊ χ (Γ*)^*> by assumption

= <x, (T*)*+ίx*>.

Hence a;* Gfl[(Γp+1)*] and (Γ*)p+1x* = (Γ^ 1)*. This completes the
proof.

DEFINITION. We shall say that T is of finite type if, for each K,
(Tκ)* is a finite dimensional extension of (T*)κ. If, in addition,
[(Tκ)* : (Γ*)κ] is a bounded sequence, we shall say that T is of
bounded type.

EXAMPLE. Every TeB(X) is of bounded type since (Tκ)* = (ϊ7*)^
for all K.

LEMMA 5. Suppose that T is of finite type and that R(TK) is
closed for each positive integer K. Then
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(a) a(T*) is finite if δ(T) is finite

(b) a{T) is finite if δ(T*) is finite.

If, in addition, T is of bounded type, then we also have

(c) δ(T) is finite if a(T*) is finite

(d) δ(T*) is finite if a(T) is finite.

Proof. By [4], Lemma 335, since T is a closed operator with
closed range

R(Tη = N(T)1 J

where for any 7 g l , Y1 = {x* e X*: <y, x*> = 0 Vy e Y}.
For each positive integer K, we can write, by assumption

(13) [R(T*)V - N[(T*)*] = N[(T*)*]®YK

where clearly Yκ must be of finite dimension. Now for K> δ(T),
it is clear from (13) that N[(T*)K]®YK must be independent of K.
But if a(T*) is infinite, {N[T*)K]\ is a strictly increasing sequence of
subspaces so that {Yκ} would need to be strictly decreasing. This is
not possible for finite dimensional subspaces. Hence (α) is verified.
Conversely, if a(T*) is finite, then δ(T) must also be finite when T
is of bounded type. For were δ(T) infinite, {[^(T^)]1} would be
strictly increasing and for K > a(T*), {N[(T*)K]} is independent of
K. By (13), this would imply that {Yκ} is strictly increasing. For
T of bounded type, this is not possible. This proves (c).

Next, we write, for each nonnegative integer K,

(14) R[(T*)*] = R[(T*)*]®ZK

and again we can deduce from our assumptions that each Zκ is finite
dimensional. But, from (12),

{ } s [X/N(T*ψ by [6] p. 227 ,

where = indicates linear homeomorphism.

Now suppose X= N{TK)®WK. Then Wκ is isomorphic to X/N(TK).

Using = to denote isomorphism, we obtain

Λ[(T*)*] s Wl
[ } ^XVWJt by [2], p. 188.

Let a(T) be infinite; then {Wκ} is strictly descending; {WK} strictly
ascending. By (16), {R[(TK)*]} is strictly descending. Now, if δ(T*)
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is finite, then by (14), {Zκ} must be strictly descending. But this is
not possible. Hence (b) is proved.

Finally, suppose δ(T*) infinite and a(T) is finite. Then {Wκ} is
independent of K for K > a(T). From (16) and (14), we deduce that
{Zκ} must be strictly increasing, contrary to assumption. This
verifies (d) and completes the proof.

THEOREM 4. Suppose T is a closed linear operator such that
δ(T) = q < oo. Let T be of bounded type. Then a(T*) < oo. Sup-
pose that T* satisfies the assumptions of Theorem 3 and that there
exists Ύ] > 0 such that (T — λ)* is of bounded type for | λ | < η.
Then there exists σ > 0 such that δ(X) is finite in the circle | λ | < σ.

Proof. The assertion that a(T*) is finite follows directly from
Lemma 5. Moreover since R(TK) is closed for K = 1 + a(T*), then
by [4] Lemma 324, R[(TK)*] is closed for K=l + a(T*)m By assump-
tion (Tκ)* is a finite dimensional extension of (T*)κ so that by [3]
Lemma 333, (T*)κ has closed range. We now apply Theorem 3 to
T * and deduce that T * — λ has finite ascent for | λ | < p* for some
p* > 0. Now (T — λ)* = T* — λ so that by Lemma 5, we can conclude
that if σ — min (p*, 37), then δ(λ) is finite in the circle | λ | < σ. This
concludes the proof.

In view of the additional hypothesis regarding the nature of
(T — λ)*, it is of some interest to examine the relationship between
extensions and their adjoints. The following lemmas shed some light
on the situation.

LEMMA 6. Suppose A1 is an extension of A2 and [Aλ: A2] — k. Then
Af is an extension of Af and if D(A1) = D(A2), then [At : Af] = k.

Proof. It is well known that Ai is an extension of Af and this
fact is trivial to verify. Let D{A^) = D(A2) = Xo and define a map-
ping E

E: X* x X* -> (Xo x X)*

by means of

If the usual norm topology is introduced into the Cartesian products,
then we can show that E established a linear homeomorphism between
X* x Xo* and (Xo x X)*. It is easy to see that E is a linear map;
moreover E is surjective, for if Fe (Xo x X)*, we have g e Xo* defined
by x -> F(x, 0) and fe X* defined by y -> i^(0, y) so that

, v)-+f(v) + g(χ) - F(χ, v).
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E is also injective, for if E(f, g) = 0, then f(y) + g(x) = 0 for all
xeX, yeX0. This is possible if and only if f=g = 0m Finally, we
can see that E is continuous; for

\ E { f , g ) ( x , y ) \ ^ \ \ f \ \ \ \ y \ \ + \\g \\\\x \\ S (II / | | + || g | | ) ( | | x II + I I V II) .

By the closed graph theorem, E~x is also continuous. Hence we have
shown that E is a linear homeomorphism.

We next observe that if we write G(T) to denote the graph of
T, then

(17) E{G(Af)} = {(?(- 4,)}1 i = l,2

where {G(— A*)}1 denotes the elements i*1 in (Xo x X)* such that
F(x, i/) = 0 for all (x, y) e G ( - A,).

For, if ajeD(Ai) and feD(Af), then

f/)(^, - AiX) = Aff(x) - /(A,*) - 0

so that E{G(Aΐ)} S {G(- A,)}1.

On the other hand, if £*(/, flf) e {G(- A,)}1, then £7(/, £)(&, - A^) =
0 for all xeD(Ai). Then / ( ^ ) = g(x) for all x e J ? ^ ) so that
feD(Af) and ί/= Γ*/. Hence any E(f,g) in {G(- A,)}1 is of the
form E(f, T*f). This proves the validity of (17).

Now

#{G(A?)} {G( A,)}^ = {Xo x X/G(- A,)}* by [6] p. 227

Now suppose (Xox X)QG(- A,) = X,. Then by [6] p. 188,

(19) Xf = (Xo x X)*/^L

where X^1 = {F: F e (Xo x X)*; F(x, y) = 0 for all (a?, T/) G XJ.
It is easy to verify that D(Ai) is isomorphic to G(— A4) by means

of the natural mapping x —* (cc, — A^). Hence, X2Θ-^Ί is a ^ dimensional
subspace and from (19), XfQXf is also k dimensional. Finally from
(18), we see that E(G(A})QG(Af)) is λ -dimensional from which we
easily deduce that

[A2* : Aΐ\ = k .

LEMMA 7. Suppose T is of finite, resp. bounded type and
D[(TK)*) = D[(T*)K] for each positive integer K. Moreover, let
either of the following conditions hold:

(i) [(T7*)** : Tκ] is a sequence of finite terms, resp. bounded
sequence

(ii) X is reflexive.
Then T* is of finite, resp. bounded, type.
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Proof. To begin with, it is well known that if X is reflexive,
then T** = T for any closed linear operator T. Hence condition (ii)
implies condition (i). Suppose condition (i) holds. Then we have

(20) [(T*)*:(T*)*] = mκ< -

and

(21) [(T*)**:T*] = nκ< - .

By Lemma 6, (20) yields

and this together with (21) gives

(22) [((T*)κ)* : T*] = mκ+ nκ.

But applying Lemma 4 to T* we get

(23) ((T*)K)*S(T**)KS Tκ

and from (22) and (23) we deduce

But this gives exactly the required conclusion.
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