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The problem with which this paper is concerned is that of
finding new conditions which imply the normality of an operator
on a complete inner product space S. Each such condition,
presented in this paper, involves the commutativity of certain
operators, associated with a given operator A. Theorem 1
states the equivalence of the following conditions: (i) A is
normal, (ii) each of AA* and A*A commutes with Re A, (iii)
A A* commutes with Re A and A* A commutes with Im A.
Theorem 2 states that A is normal if AA* and A*A commute
and Re A is nonnegative definite. Finally, Theorem 3 states
that if A A* commutes with each of A* A and Re A, then A A*
commutes with A. In this case, if A is reversible, then A is
normal.

The notation and terminology used will be as follows. S is a
complex, linear space and Q is an inner product for S, such that S
is complete with respect to the norm N, induced by Q. T is the
space of linear operators on S to S, continuous with respect to N.
If A is in Γ, A* is the adjoint of A with respect to Q, Re A =
(A + A*)/2, and Im A = (A - A*)/2i. An element A of T is non-
negative definite if Q(Ax, x) ̂  0 for each x in S, Hermitian if A =
A*, normal if AA* = A*A, reversible if A is one-to-one, and invertible
if A is one-to-one and onto.

The following special notation will be used throughout the paper.
Let JB2 = AA* and C2 = A*A, where B and C are nonnegative definite.
b and c will denote the spectral resolutions of B2 and C2, respectively
(1, pp. 114-116). These spectral resolutions will be taken to be
continuous from the right at each point.

One can see from the following example that relatively strong
hypotheses on operators associated with A are necessary in order that
A be normal. Let A be the operator on ϊ2, defined by A = {aif3)T>ά=1

where aί>i+1 = 1 and aifj = 0 for j Φ ί + 1. Then B = 1 and C = P,
where P is a certain projection not equal to 1 or 0. Since B = 1,
then 5 commutes with C, Re A, Im A, and even with A itself.
However, A is not normal.

2* Commutativity relations concerning B and C*

THEOREM 1. TΛβ following are equivalent:
( i ) A is normal,
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(ii) each of B and C commutes with Re A,
(iii) B commutes with Re A and C commutes with Im A.

Proof. That (i) implies (ii) and (iii) is obvious. Let H — Re A
and K = ImA.

(ii) => (i). If HB2 = BΉ and HC2 = C2H, then one has

( 1 ) A(B2 - C2) = (B2 - C2)A*

( 2 ) and A*(B2 - C2) - (E2 - C2)A .

Multiplying (1) on the left by A* and using (2), one finds that

( 3 ) C\B2 - C2) = (B2 - C2)B2 .

Multiplying (2) on the left by A and using (1), one has

( 4 ) B\B2 - C2) = (B2 - C2)C2 .

Subtracting (4) from (3), one sees that (B2 - C2)2 = - (B2 - C2)2.
Therefore, B2 — C2, and A is normal,

(iii) =* (i). If KC2 = C2iΓ, then

( 5 ) (B2 - C2)A - - A*(B2 - C2) .

Multiplying (5) on the left by A and using (1), one has - B\Bλ - C2) =
(J52 - C2)C2. Therefore, B" = C\ and £ 2 = C2 (2, p. 262).

LEMMA 2.1. (i) Ah/(£)dc = \/(ί)d6 A, for each continuous

complex-valued function on the real line.
(ii) ACn = BnA, for each positive integer n.
(iii) Ac(t) — b(t)A, for each value of t.

Proof, (i) By definition of B2 and C2, AC2n = B2nA for each

positive integer n. Therefore, A \\tn dc \ = \\tn db A for each non-

negative integer n. The desired result follows by use of the

Weierstrass approximation theorem, (ii) and (iii) are both special cases

of (i).

THEOREM 2. If BC = CB and Re A is nonnegative definite,
then A is normal.

Proof. Let ί be a real number and let H = Re A and K — Im A.
Define k(t) = [1 - c(ί)] Ac(t) and n(t) - c(t)A[l - c(ί)]. Then, using
Lemma 2.1, one finds that Ak(t)*(S) c &(ί) (s) and An(t)*(S) c w(ί) (S).
Since k(tf = 0 and t^(ί)2 = 0, &(ί)Afc(ί)* - 0 and n(t)An(t)* - 0.
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Therefore, k(t)Hk(t)* = 0 and n(t)Hn(t)* = 0. Since H is nonnegative
definite, then Hk(t)* = Hn(t)* = 0. Substituting for k(t) and n(t),
one sees that

( 1 ) H[l- c(t)]A*c(t) = 0 and

( 2 ) Hc(f)A*[l - c(t)] = 0 .

Subtracting (2) from (1) gives

H[A*c(t) - c(t)A*] - 0, so that

( 3 ) HA*[c(t) - δ(ί)] = 0 by Lemma 2.1.

In an analogous fashion, using p(t) = [1 — b(t)]A*b(t) and q(t) =
l — δ(ί)], one arrives at

(4) ίLl[δ(ί) - c(ί)] = 0 .

Combining (3) and (4), one finds that HK[b(t) - c(t)] = 0 and
H2[b(t) - c(t)] = 0. Then H[b(t) - c(t)] = 0. A simple calculation
shows that B2 - C2 = 2i(.Kff - ίίίΓ). Combining these last three
equations, one has (B2 — C2) (b(t) — c(ί)) = 0. Since t was arbitrary,
then (B2 - C2)2 = £ 2 - C2 = 0 and A is normal.

THEOREM 3. If B commutes with each of C and Re A, then B
commutes with A. Moreover, in this case, if A is reversible, then
A is normal.

Indication of proof. The final conclusion follows easily from
Lemma 2.1. Again let H = Re A and K=ImA. By use of the
hypotheses, Lemma 2.1, and certain algebraic manipulations, one can
show the following:

( 1 ) (B-C)CH=0

(2) ( J 5 - C)H(B- C) = 0

( 3 ) C(CH - HC)C - 0

( 4) AίL4*£ = BAH A* and

( 5 ) A(B2 - C2)£2 - AC2(£2 - C2) = 0 .

This final equation then implies that A(B2 — C2) = 0. Therefore, by
Lemma 2.1, AB2 = i?lA. Since i?2 commutes with A, so does B (2,
p. 260).

In concluding this paper, I should like to note that the proofs of
Theorems 2 and 3 can be made much simpler algebraically, if it is
assumed that A is invertible. However, it seemed reasonable to make
the extra effort to prove the theorems without this added hypothesis.
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I should also like to note that Lemma 2.1 appeared in my doctoral
thesis at the University of North Carolina. Theorems 2 and 3 appeared
in the same thesis with the added hypothesis of invertibility of A.
Again I would like to thank Dr. J. S. Mac Nerney of the Department
of Mathematics of the University of North Carolina for the direction
of my doctoral thesis.
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