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Let M be a ring of operators on a Hilbert space H. This
paper considers condifions under which an operator 7 affiliated
with M is bounded (or can be unbounded). In particular, we
consider operators whose domain is the entire space H. We
prove: Tueorem 3. If M has no type [ factor part, then T
is bounded. Turorem 4, 7 is bounded if and only if T is
bounded on each minimal projection in M, TuroreMm 6. In
order that every linear mapping from H into H which com-
mutes with 2/ be bounded, it is necessary and sufficient that M
should contain no minimal projection whose range is an infinite
dimensional subspace of H. These results were suggested by
a theorem of J, R. Ringrose: Tueorem 8, If M =M then T
is bounded.

In a paper on triangular algebras (4], Lemma 2.12) J. R. Ring-
rose encountered the following situation: he was given a linear
operator T with domain equal to an entire Hilbert space H and a ring
of operators M commuting with 7. In the case M = M’ (M maximal
abelian) he was able to show that 7 had to be bounded. (For the
relevant background theory, see [1, 2].) The purpose of this paper is
to consider other types of rings of operators commuting with 7 and
conditions under which T can be unbounded.

2. Since the projections in M commute with 7T, the ranges of
these projections are invariant under 7; and consequently operators
are induced thereby on such subspaces. We begin by considering
orthogonal families of such operators,

LemMMmA 1. If {E,|v e I'} is an orthogonal family of projections
in M, then the norms {|| TE, ||| v € I'} are almost uniformly bounded;
that s, there exists a finite subset Iy of I and a positive number b
such that || TE,|| b for vye ' — I,

Proof. Assume lemma false. We first choose a F, such that
| TE, || >1. (If || TE,|| =1 for all vy € I"; then I’, = null set, b =1
fulfills the lemma.) Now assume for a positive integer 7 that
(B, |k=1,2,3,.--,n} have been chosen so that || TE, || >k for
each k. If ||TE,|| =n+1 for vyelI' —{v,|k=1,2,8, .-+, n), then
b =mn + 1 leads to the conclusion of the lemma. Thus we can pick
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8 7, such that || TE, || >n + 1. Finally, our induction produces
a sequence K, with || TE, || >k for all integers k.

Next, select x, in ), H such that |{%, || =1and || Ta,|| = || TE, .| = k
for all %, using || TE, || > k. Let y, = >1.,2./k. Now, since
»o1

ICE%E<OO.

PRSI

¥, converges to a vector y in H. Clearly y,e (XiH, )H and y—
Yu € (Ssaliy, )H. Since these two subspaces are orthogonal and invariant

under T, Ty, is orthogonal to T(y — y,) for each integer n, But, by
Bessel’s inequality

po
H

The contradiction || Ty | = » for all n completes the proof of the
lemma.,

WTylP =z [ Ty |l =

TE% g HTEY,,ka
S| =

IlMg

= N.

COROLLARY 1. If all the TE, are bounded, then the set
UTE, v eI} ts uniformly bounded.

COROLLARY 2. If I' is infinite, at least one of the TE, 1s
bounded.

LemmMA 2. If the {E,|ve I} of Lemma 1 is such that the
I TE ||| ve 't are uniformly bounded by the number b > 0, then
I T8, = b.

Proof. For win H, || T(SE)e | = || (5,B) T | = X, || B,To | =
5, (TE)Eg | < 30| B | < 0|l |1

Lemma 3. If E, F are projections which are equivalent relative
to M; then || TE || = || TF|.

Proof. Let V be a partial isometry in M with initial domain FH
and terminal domain F'H, (or V*V = K, VV* = F.) Now V(TE)V* =
TVEV*=TVV*VV*=TF*=TFand ||TF||=||V(TEHV*|| ||V ||
|TE-||V*||<||TE|. Interchanging V — V*yields || TE|| < || TF|
and completes the proof.

3. DerINITION 1. Let T be a everywhere defined operator on a
Hilbert space. T is said to be totally unbounded with respect to the
ring of operators M if T commutes with the elements of M and TE
is unbounded for each nonzero projection E in M.
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THEOREM 1. Let T be a everywhere defined operator on H com-~
muting with a ring of operators M. If T is unbounded then there
exists a central projection P in M such that PT is bounded and
PLT is totally unbounded with respect to MP-*.

Proof. If T totally unbounded with respect to M, then the pro-
jection 0 qualifies as our P. Thus we may restrict ourselves to the
cases in whiech nonzero projections K exist in M such that TFE is
bounded.

Choose a maximal collection {E,|v e I'} of nonzero orthogonal
projections of M with each TFE, bounded. It then follows from
Corollary 1 to Lemma 1 that the {|| TZ, || | v € I} are uniformly bounded,
Then, Lemma 2 shows that T is bounded on X, ..

Now, let P = %,c E,. Obviously TP is bounded; and if TFE is
bounded for 0 = K < P, E € M, then E could be added to our maximal
collection {#, | v € I'}. Thus, it only remains to prove that P is central.

Let @ be the central cover of P in M. If Q@ — P == 0, apply the
projection comparison lemma ([1], p. 227, Lemma 1) to (@ — P, P) to
get two nonzero projections E, F'in Msuchthat E < P, F < Q — Pand
B ~ F. But Lemma 3 shows that || T'F'|| = || TE || < « contradicting
the first part of the proof of this lemmma. Thus @ — P=0and P is
central in M,

4. It is clear from Theorem 1 that the problem of classifying
everywhere defined unbounded operators commuting with rings of
operators can be reduced to the study of totally unbounded operators.
Thus we consider the following theorem.

THEOREM 2. If T is totally unbounded with respect to the ring
M, then M is a finite direct sum of finite foactors of type I. In
each factor direct summand, M’ is an infinite factor of type I.

Proof. Let E be any nonzero projection in M and assume that
E does not contain a minimal projection of M, If so, then there
exists a nonzero projection &, in M such that E, = F and E, not
minimal, Similarly an E,(= 0) in M with F, £ E, and FE, not minimal
exists, Continuing in this fashion by induction we obtain a decreasing
sequence of projections {E£,|k=1,2,8,---} in M. But now {F, =
E,—E, k=1, ..-} is an infinite set of orthogonal projections in
M and Corollary 2 to Lemma 1 yields a projection F, on which TF, is
bounded-contradicting total unboundedness. Thus each nonzero pro-
jeetion in M contains a minimal projection,
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Now pick a maximal family {F,|v e I'} of orthogonal minimal
projections in M. Clearly, " is finite. If X ¢ F, = P I, then Pt
contains a minimal projection F' orthogonal to the F, contradicting
maximality of {F,|v e I'}

Thus [ = 3¢, Fy = 3¢ P, where the P, are the central projections
obtained by adding up the (finite) families of equivalent minimal pro-
jections in I", It is clear that M = X, MP, is a direct sum decompo-
sition of M into a finite number of finite factors of type 1. It is
also clear that M’ = X, M'P, is a direct sum decomposition of M’ into
factors of type I. Further, if one of the M’P, is of finite type, the
fact that MP, is a finite factor of type I leads to P,H being finite
dimensional in H and to TP, being necessarily bounded-contradicting
total unboundedness of 7. Hence each M’'P, is of infinite type I.

The next theorems are corollaries of Theorems 1 and 2. In each,
T is everywhere defined and commutes with a ring of operators A,

THEOREM 3. If M has no type I factor part, then T is bounded.

THEOREM 4. T is bounded if and only if it is bounded on each
minimal projection in M,

THEOREM b. If the coupling operator for the pair of rings M,
M is essentially bounded then T is bounded. In fact, M' = {T: H
into H| T linear and commutes with M}, (see [2], p. 497, Def. 3.2).

THEOREM 6. In order that every linear mapping from H into
H which commutes with M be bounded, it ts necessary and sufficient
that the finite central part of M should contain no minimal pro-
Jection whose range 1s an infinite subspace of H.

Proof. Sufficiency is clear. In case a minimal projection £ has
infinite dimension in H, let an unbounded operator with domain equal
to EH be selected leaving K H invariant; and extend it to an orthogonal
family of minimal projections (whose union is the central cover of KE)
by means of partial isometries. On parts orthogonal to the central
cover define the mapping to be zero. If T is this operator, it is clear
that T is unbounded, everywhere defined, and commutes with M —
thus contradieting our hypothesis.

THEOREM 7. If M' is finite, then T is bounded.
THEOREM 8. (See Ringrose (4], Lemma 212) If M =M, T is
bounded. (This is a corollary to Theorems 5 and T.)

5. We now consider the well-known theorem: If T is an every-
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where defined linear operator on H, then T is bounded if and only if
T is closed. This is usually deduced from the closed graph theorem,
but we shall give here a proof along the lines of the first sections
of this paper.

By a theorem of von Neumann ([3]) a closed operator with dense
domain <7, has a polar decomposition VS with S =0, <=
5, IV]| £1, so that it suffices to restrict ourselves to the case
T=0. We assume T unbounded.

Since T is now self-adjoint, we apply the spectral theorem to
obtain a sequence of orthogonal projections {E£, e M|k =1,2,---} (M =
ring generated by spectral family of 7') with || TE, || unbounded. But
now the reasoning of Lemma 1 proves that T cannot be defined on
all of H.
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