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In this paper, conditions will be found on nonlinear per-
turbations of the evolution equation with skew adjoint generator
sufficient to guarantee the existence of nontrivial mild global
solutions of the perturbed equation which converge to solutions
of the unperturbed equation as { — + o or —oo, These results
are used to prove the existence of wave operators for certain
semi-linear hyperbolic equations,

Let H be a real separable Hilbert space and A a skew adjoint
linear operator on H. Denote the one parameter unitary group
generated by A by e'“.

Let K be a map from R x H— H denoted by K,(u) for ue H,
te R. Assume also that K,(0) = 0e H for all te R. The object of
study in this paper will be functions «#: R— H such that K,(u(f)) is
Bochner measurable and

(1) w(t) = e*u, + S:e“‘“‘Ks(u(s))ds

where %, is some element of H. Note that it is assumed that w is
defined for all real ¢; i.e., it is a global solution of (1). An elementary
sufficient condition that there exist such « is that K, is globally
Lipschitzian. That is, there exist £ such that

| K(u) — K() || = k|lu— ]

for all te R and u,ve H.
If w(t) is strongly differentiable, is in <, for all ¢ and satisfies
(1) then

(2) L Aut K u0) =,
For this reason solutions of (1) are called global mild solution of (2).
These are the only type of solutions this paper will be interested in.
The main question of this paper is whether there are solutions
of (1) which behave for large positive or negative ¢ like e’4v for some
veH., If ||K(u)— K®| =o@®)|lw—2v{ for all u,ve¢H and ¢
bounded integrable then u(t) exists for all w,€ H and behaves in this
manner (Prop. 3). If K does not depend on time, the results are not
as straightforward., Propositions 4 and 5 give sufficient conditions on
an element v, € H that there exist a solution of (1) behaving as ¢t — — oo
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or 4 oo like e*4v,. These results are then applied to the question of
existence of wave operators certain semi-linear hyperbolic equations
which may be written in the form (1) or (2).

2. Wave operators. It is convenient to define a number of
terms which will be useful later.

DEFINITION. %_( %) is a map from a subset &1 (<) of H to
a subset #Z_(#.) of H defined as follows. u,€ & if lim,,_.e*4u(t)
exists where u(f) is a solution of (1) with initial condition wu,.

H_u, = lim e~t4u(t) .

tor—oo

w_( %) is the backward (forward) wave operator.

REMARK., 1. The above objects depend on A and K,. If neces-
sary they will be written Z 4%, o4E, ete.

2. All proofs will be for %#~, &, &% _. Similar proofs with the
obvious changes will work for %5, &, “#..

3. If woe & and w, = Z u,c R_ then e“4w, satisfies (1) with
K, =0 and initial condition w,  Moreover | e“w, — u(t)||— 0 as

t— — oo,

PropoSITION 1. Let w, be in H. Suppose there exists a Bochner
measurable function v : R— H such that

@ | I Koo (e 1 dt < o=
(b) () = wo + Siwe““Ks(e”v(s))ds t<0.
Then w,e <2_ and v(0)e & with 20(0) = w,.
Proof. Let u(t) = e“v(t). Then u(0) = v(0). By (b),
u(t) = ew, + Siwe“"“"Ks(u(s))ds
— e49(0) + S:e““”“Ks(u(s))ds .

u(t) is a solution of (1) and with initial data »(0), and

) — woll = || o®) — w, | = |1 K(eo(t)) | dt—0 as t— — oo,

COROLLARY 1. Let u, be in H such there exists a solution v(t) to
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1]
1) with initial data w,. Then if S [| K, (u(s)) || ds < oo, uy€ . and
0
Uy = Uy — S e K (u(shHds .

ProrosiTiON 2. If K, is Lipschitzian with constant k& and %, and
v, are & with % u, = 9%”wv, then u, = v, if

[ lum—voidsve 550, e>k
and u(t) and v(t) satisfy the hypothesis of Corollary 1.
Proof.
fu(t) —v(@) || = g | K (u(s)) — K,(v(s)) || ds
=< IcS Il u(s) — (s) || ds
Let o(t) = || u(t) — v(t) || and
p(t) = | _llue) — v(s) | ds = e .
@(t) is absolutely continuous and ¢’ = o.
P = ko
4 e <
T (pe™) =0
St 4 (et < 0 t=T
r di - -

iLe. @)™ = p(T)e ™ < v " —(0 ag T— — oo,
pt)e™ < 0. t> — oo
P(0) = 0= 0(0)

The following classical result will be helpful.

LemMA 1. Let p,0,¢ be positive real valued measurable functions,
o and ¢ bounded and o integrable such that

o) = &(t) + | _ots)oteds .
Then

oty = &(t) + exp (S;o(s)ds>5iwe(s)o(s) exp (S;a(a)da)ds
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The following is a result of Segal [2] and Strauss [6]. For H = E*,
this result is classical.

ProrosiTION 3. If || K, (u) — K, (v)|| £ 0(f)|| u — v || where o(t) is
bounded integrable then < = <Z_= H, 9% is one-one, Lipschitz
continuous with a Lipschitz continuous inverse.

Proof. Let w,c H. Let u(t) be the solution of (1) with data u,.
Thus

wlt) = ety + gte””s“Ks(u(s))ds 1<0.
0
Thus

) || = w1+ ['o6) ) 1 ds

Then by a classical result,

lu®) || < | (4 + co) where ¢ = | ottt .

[ Ko ids < | o) 1u(e) 1 ds < et + ce) ]

Thus u,€¢ &7 by Corollary 1. .. < — H. Let u, and v, be in H.
Let u(t) and v(t) be the corresponding solutions. Then

lu®) = o(®) 1 = llw — || + [ o) ue) = vl ds =0,

Hu(@) —v@) || = [|ue — vl (1 + ce°) Vi< 0
| %"ty — 77 v || = [[ % — 0o ]| (1 + ce%) .

Thus <7 _ is Lipschitz continuous. Now suppose %% _u, = % _v,.

e-4u(t) = uy + S:e“”Ks(u(s))ds .
etan(t) = v, + S:e““KS(@(s))ds .
Similarly,
e~ tu(t) = e T4u(T) + S;e‘t“s’AKs(u(s))ds

etan(f) = e~T4(T) + S;e““““Ks(v(s))ds :

Therefore
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Te=u(t) — eo(t) | = | w(t) — v@) || S | (T) = o(T) |
+ S;o'(s) lu(s) — v(s)|[ds O0ztzT

1u®) = o) 1| = | u(T) = o(D) | + |_0(s) ]| 0(6) — v(s) 1 s .

By Lemma 1,

(3) Ju@) —v@® || = |wT) —o(T)||[L+ce) 0z=t=T.
But || w(T) — o(T)|| — 0 as T — — oo,

[lu(t) —v(@)||=0 Vt=0. In particular for ¢ = 0.

Uy = Vo.
Let T = 0 be such that r o(s)yds = ¢ < 1. Let u,e H., Define re-
cursively

w () = 1y + S;e““Ks(e“unml(s))ds . t<T.
Claim (@) || %,(t) — %,a(®) | = "™ || u, || t=T
(b) Hu ()] = || %o || Sipeo ™ t=T.

These are proved by induction. Some care must be taken since u,,,
is not defined until (b) is proved for wu,.

It follows that there exists a measurable v(¢t) such that w,(t) — v(¢)
uniformly on (—e, T]. Also, ||v(®)]| = ||w]|/Qd —¢) for t < T.

It’s trivial show there a unique w(t): R — H satisfying

w(t) = ¢o(T) + S;e““““Ks(w(s))ds :

For ¢ < T, e w(t) = v(t). Let ¥(t) = e *w(t). ¥(t) satisfies the
hypothesis of Proposition 1. .. w,e &#_, .. F#Z_= H. It follows from
(3) that

w(t) —v@®) || = || Zue— P || (1 + ce) t=0
uo — v || £ || Z Uy — Z w,|| (1 + ce®) for uw, & v,e H.
|| 2y — 70|l S [ o — 0[] (1 4 ce) .

COROLLARY 2. S = %, %™ exists and is Lipschitz continuous.

ProPOSITION 4. Let 8¢ H. Let K independent of ¢ and Lipschitz
cont. with Lipschitz constant k. If || K(e*B)|| = de** for ¢ = T (some
fixed T) and ¢ >k, then Be < _ and in fact there is a solution wu(t)
such that
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d

*) e utt) — Bl = —L— <

Moreover, u(t) is unique among solutions satisfying *

Proof. The proof is a Picard iteration. Because of the technical
details, a proof is included. Let v,(f) = 8

0.(t) = B + Siwe“”K(e“v%l(s))ds t=T.
Claim (3) | ,(t) — vuni(®) || = ZE gt t= T
@S;MWW@MMg%w:@y =

lo@® =l = | _I1Ke s |ds= Lo

(a) holds for » = 1. Moreover

| I EE e lds = || Keos) — Kietg) | ds

+ | IKe s s LB Y gy

(b) holds for n = 1.
Assume v,_,(t) exists and satisfies (b). Thus »,(¢) exists.

St || K(e*v,(9)) || ds <g I, = Bilds + — , t<T.
But
HW~M§YHMW%@MM<%W§@y b= T
§;wmwmmwg%w+ o 3 (L)
=g s =T
[0.(0) — vau(®) || = K Sinvﬂ_l(s)—vn_z,(s)Hds
= I g t<T.

C'IL

Thus v,(t) exist for all n and ¢ = T and satisfy (a) and (b).
Thus »,(t) — v(t) uniformly on (— o, T). In fact,
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k L3

|va(t) — v(®) || = <_C__) det

k—c¢

v(t) satisfies

—c0

v(t) =B — St e K(e*4v(s))ds .

If T = 0 then »(0) is already defined and by Theorem 1, Sec R_.
If T<0, let w(t) satisfy

w(t) = et4u(T) + S;e“‘s’AK(w(s))ds :

w(t) exists for all ¢ and w(t) = e'v(f) for t < T.
If 9(t) = e *w(t) then ¥(¢) satisfies the hypothesis of Proposition 1.
Thus Be Z_. w(t) is our sought after u(t). For t = T,

e~ w(t) — Bl = llv@t) — Bl = [1v(t) — vu®) | + || va(t) — B

()Rl =

Suppose #7°2(0) = B|2(f) — eB|| = et ¢’ >k for t = T'.
Then

1 2(t) — w(t) || < veet + —2 —e t<min(T, T).
c —
Then z(0) = w(0) by Proposition 2.

ProOPOSITION 5. Let

k) — sup LK@ = KO)|

Il loll 7 lu— v

Assume k(s) is bounded on compact subsets of RB*. Assume also that
for any u,€ H, there is a solution of (1) with data w,. Let 8¢ H and
assume || K(e¢"B)|| = ve® fort = T"” and ¢ > k(2| B]]). Then e .#Z_.

Proof. Let T' be such that if ¢t < T',ve* < (¢ —k)||B]ll, k=
k@2l B|). Let T=min(T', T"). Let v,t) = 8. Let

ui(t) = B + gt_we“s“‘K(e”,B)ds t< T
(1) [lv(®) — Bl = (v/e)e t=T
(i) o) || S Bl + (v/e)e = (2 —Kje)||BRl] t=T.

It follows that v,(t) is defined as is Proposition 4.
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Claim || ,(t) || = (2 - (%)) 18Il t= T True to n = 1.
0ut) = 2@ = |1 Koo, (s) — K(ev, () [|ds ¢ =T

By induction assumption, || v,_.(s)|| and ||v,_.(s)]| are both less than
21481 for s= T.

lou®) = vl = |7 110,(6) —0s(e) |1 s -

But {[w,l], lJo:ll =+« l[vacs /| = 2/ B
for 7 < m,

ect

1od0) = 2@ 11 S k1009 = 0psl) s = 220

by induction,

[0,(t) = vaa(t) || = 7’“’;“1 e

“/k gt AN
o011 = ) | + 2o = (2= (£) ) 1811
Now proceed as in Proposition 4.

3. Nonlinear wave equation. Consider the partial differential
equations

(4) Ou=0 u(0) = r(Z) u,(0) = s(&)
(5) 00w = qF(u) u(0) = r(&) u,(0) = s(Z)
where [J = 32, (0*/0x2) — (0°/0t%), ¢ is a funetion on R®, and F is a

real valued function of a real variable. Let H = &,=5; @ L, where
v=r 18 the completion of the domain of /=4 in L, with respect

/
to the norm [|Vu ||, = (S [Vu |2)1 2. The Sobolev inequality shows that
RS

we may treat the elements of &,.,=7; as functions. (&,=r C L;). Let

a0
40
on H, i.e., A<Z> = (j;) for such (Z’) where it is defined. A is
skew-adjoint with respect to H(u)l (2 = [[Vull; + [[v]3 where || [, is

the L, norm. Let K:H— H be defined by K( ) <qF’0(u)> It
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re C? and se Cy then ue CP for each t. Then (,Zf%%) € H and
t

' d (w) % U
(6) dt (ut) - A(ut) * K(ut)

where u satisfies equation (5). In general true solutions to

da
6 —— =A K
(6) = a + Ka

are not strict solutions to (5) but are solutions in a weak sense. In
fact however this paper will be interested in solutions to (6); i.e., mild
solutions. For a discussion of the above see [2, 3, 4, 5].

PROPOSITION 6. Assume F(0) =0, |F(x) — F(y)| < k|x — y| and
lq(x) | = ve=, |2| = (2} + 2} + @§)"* where

c> <2k7§1’3d )1/2 .

d = sup,eo= (|| % [lo/]| Ve [l-). (& is finite by the Sobolev lemma). Then
if p,eCer@PCyrcH, p,€ #_ (and F#Z_).
Proof.

1/3
| K(0) — K | =7 ll@ — || where 77:_2%7;_1,

Thus there exist unique solutions of (6) for any initial data. By
Huygen’s principle, et4p, is detached; i.e., 3t, such that if

u(t) o
(ut(t)l) B

w(t) and u,(t) vanishes in a cone {|x| < [¢|+ t,}. Thus

| Keg) [ = [eFuoide < it fgw =] g
z|=|t]+ty
2/3
= kzdz(‘xx;zu;Jrzoqz) ol
< Bd* || @ |7 (471'):;3?—2”0 g—e—a)ltl
(4

for any € >0 and | £| > T(e). Our result then follows from Proposition 4.

REMARK. Note that only the fact that w(t) is detached is used.
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PROPOSITION 7. Assume Fl(u) = u* |q(x)| = ve ., Then if
P2 C3 @D Cy, p,e 57, and Z7_.

Proof. 1t is proved in Segal [2] that for this case, solutions exist
for any initial data. || K(a) — K(B)|| = 3vd*r*||a — B|| where ||«a|,
|BIl =r, ie, k(s), is the notation of Proposition 5, is 3vd’r (use
Sobolev inequality). Suppose @,c Cy P Cy. It will be shown that for
[t| sufficiently large

|| K(e"po) || = vie~*"" where ¢ > k(2| @) .

The result then follows from Proposition 5. Let q(t) = GLL((?))

| K| = |au .
But u(t) is detached so

gut < e—ctil+eg)? S ub
{el2tl+tg

K = |
lelZti+to
< g ctltl+ip26 H @o Hﬁ .
[ K(epy) || = d° || o, ||t |
For |t sufficiently large

e~c<It1+t0)2 < ,\/‘lze—ﬂ’ltl

for arbitrary ¢'.
By Propositions 7 and 5 there exists a ,(¢) satisfying (2) mildly
such that

[a(t) — epoll = ve= ] = T(o)

where @ and K satisfies the hypothesis of Proposition 7 where ¢ is
arbitrary. Fix ¢. Then for || sufficiently large, ||v. || = 2| @y|]. Thus
K= [| = || K(v=(8)) — K(e"po) || + || K(e“p,) ||
= k2 || o |))ve s 4- et = ye
ie. | K(pa(@) || < vipe™ for ¢= Ti(c) (*)
K@) || <v_et for t=T(c) (**)

for arbitrary positive e. Thus:

COROLLARY. If K is as in Proposition 7, there exist solutions
to (dp/dty = Ap + K(p), satisfying (*) and (**).

REMARK 1. It is not clear whether there exist ¢ satisfying (*)
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and (**) simultaneously.

REMARK 2. Strauss [4, 5] by using energy inequalities has shown
for the case F(u) = qu® that there exist solutions wu(zx, t) such that
|| K(u(t)) || are integrable which implies they are in the domain of
%~ by Proposition 1.

4. Nonlinear relativistic wave equation. Consider the partial
differential equation

(7) O u = mu + qF(u) u(0) = r u,(0) = s

where m > 0. By a result of R. W. Goodman [1], has no finite energy
detached solutions. As in §3, consider mild solutions to

d
751 =Ap + K@) 2(0) = o,

where in this case H = v @ L, and

AZ((Wid)Q
G

=V =4 ulli+ (v},
The following will be proved elsewhere (in a somewhat stronger
form).

LeMMA. Let r(x) and s(x) be in L R’). Let ¥ and § be their
Fourter transforms. Assume (m* + |x|*)*7 and (m* + |2 |?)*§ are) in
I’ where I is the image under Fourier transform of L(R®. Then
lu(x, t)|le = 01/ |t]) where u(x,t) satisfies (4) with F = 0.

ProPOSITION 8. Suppose ¢ is bounded, F' Lipschitz and F =0 in
a neighborhood of 0. Then if the initial data satisfy the requirements
of the above lemma || K(e*“p,) || — 0 exponentially. In fact || K(e*p,) || =
0 for |t¢| sufficiently large. Thus 9. have nonempty range by
Proposition 4.

Proof. As before, if

—(“er k=
@—Q% ’@*«~ww»

Let ¢, = (g) where r and s satisfy the above lemma. Then
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fthop, — (u(x, t)) .
(%, )

0
K(eHp,) = (_ qF(u(z, t))) '

But there exists ¢ > 0 such that if |y]| <e, F(y) = 0 by hypothesis.
By the above lemma, there exists a 7 such that if |¢]| > T,
||u(x, t) ||« < e. Thus for |t| > T, F(u(z,t)) =0 for all ze R, If F
is Lipschitz continuous, so then is K.

I. E. Segal has recently obtained by similar methods stronger
results along the above lines.

Thus

Added in proof. The hypothesis of Proposition 4 and 5 may be
weakened to So e || K(e*4B) || dt < oo for some ¢ > k.
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