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Let A be an associative ring with left minimum condition
and identity, Let g(d) denote the number of nonisomorphic
indecomposable A-modules which have composition length d, d
a nonnegative integer, If, for each integer 7, there exists
an integer d > n, such that g(d) = o, A is said to be of
strongly unbounded module type.

Assume that the center of the endomorphism ring of
each simple (left) A-module is infinite, The following results
concerning the structure of rings of strongly unbounded type
are obtained,

I. If the ideal lattice of A is infinite, then A is of strongly
unbounded module type.

II. If A is commutative, then 4 has only a finite number
of (nonisomorphic) finitely generated indecomposable modules
if and only if the ideal lattice of A is distributive. Other-
wise, A is of strongly unbounded module type.

III, 1If the ideal lattice of A contains a vertex V of order
greater than three such that, for some primitive idempotent
ec A, the image Ve of V is a vertex of order greater than
three in the submodule lattice of Ae¢, then A is of strongly
unbounded module type.

These results are generalizations of earlier ones obtained
by J. P. Jans for finite dimensional algebras over algebraically
closed fields.

Let A be an associative ring with left minimum condition and
identity, The length, c¢(M), of a (left) A-module M with composition
series is the number of composition factors of M. Let g(d) denote
the number of nonisomorphic indecomposable A-modules which have
length d, d a nonnegative integer, If 3, g(d) < -, A is said to be of
finite module type. If there exists an integer n such that g(d) = 0
for all d > n, A is of bounded module type. If not of bounded module
type, A is of wunbounded module type. If for each integer m, there
exists d > n such that g(d) = «, A is of strongly unbounded module
type. R. Brauer, J, P. Jans, and R, M. Thrall have conjectured that
infinite algebras of unbounded type are of strongly unbounded type,
and that algebras of bounded type are of finite type [4]. A discus-
sion of the state of these conjectures may be found in [2] and [4].

J. P. Jans has given sufficient conditions that a finite dimensional
algebra over an algebraically closed field be of strongly unbounded
type [4]. Through extension and modification of the techniques used
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by Jans and by H. Tachikawa [6], some of these results can be
obtained for arbitrary rings with minimum condition, provided that
the endomorphism rings of the simple A-modules have infinite centers.

2. Rings with infinite ideal lattices. Let A be a ring with
left minimum condition with the property that the lattice of ideals
of A is infinite. H. Tachikawa showed that A is of unbounded type
[6]. 1f A is also a finite dimensional algebra over an algebraically
closed field, A is of strongly unbounded type [4]. The following
theorem generalizes these results.

THEOREM. If the center of the endomorphism ring of each simple
(irreducible) A-module is infinite and if the ideal lattice of A is in-
finite, then A 1s of strongly unbounded module type.

Proof. Since the ideal lattice of A is infinite, the lattice contains
a projective root [1].

B

B

Since A/B-modules are A-modules, we can assume that B=0. Also,
there exists an A — A isomorphism «: B, = B,. Let N denote the
radical of A and define M = I(N)N»(N). Since B, and B, are
simple ideals we have B, + B, = B, @ B, & M. There exist primitive
idempotents ¢, f € A such that fMe 2 fB.e @ fB,e ©(0). Choose w =
fue # 0 in fBe and let v = y(u). Let ACfAf be a set of repre-
gentatives for the nonzero distinct cosets of the center of fAf/fNf.
Evidently, A is infinite. For ne€ 4, define s(\) = M — u. Since fAu,
fAv, fAs(\), are all nonzero and u, v, s(v)€ M, we have Af/Nf =
Au = Av = As(\).

LEMMA 1. If M # ped,a,be A, and s(\)a = bs(y), then s(Ma =
bs(p) = 0.

Proof. We may assume that acede, be fAf. Since BN\ B, =0,
we have \va = bpv and ua = bu. Since v = ¥(u), va = bv so that Abv =
bpv. Thus, since fAf/fNf is a division ring, Ab = by (mod fNf) =
#b (mod fNf). Since \ # p (mod fNf), b = 0 (mod fNf). Since ve M,
the lemma follows,
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LemuMA 2. If a,b, ¢, de A and s(\)a + vb = ¢s(A) + dv, then va =
cv, ua = cu, and vb = dv,

Proof. Since B,N B, =0 and v = +(u), we have cu = ua, ¢cv =
va, and wwa + vb — env — dv = 0. Hence, since ¢ = cn (mod fNY),

b = dw.
For each positive integer =, let X" be the direct sum of % copies

of Ae,
X" =@ g_; e(Ae)
and let Y denote the socle of X", For \c 4, define
T = {?::1' ea;_w + a;s(\): a, = 0, a; € A} .

Let H? = X"/Tt and St = Y*/T?. Since the length of T? is =, the
length of S = 2n — n = n.

We proceed to show that H} and H® are not isomorphie, provided
N ped, Suppose 0: Hy = Hj, Since X" is projective [3], there
exists §: X" — X" such that 6r, = .0, where «,, 7, are the natural
projections of X" onto Hy, Hp, respectively. There exist x,---,2, € ede,
such that

Oe,(e) = é elx;) .

Since me,s(A\) = 0, and 6rx, = 7.0, we have x,f¢,s(\) =0 and hence
fe,s(\)e T=. Thus,

S eds(Ve,) = fe,s(v € Tk .

According to the definition of T7, there exist a,=0,0a, +--,0a,€ A,
such that

S()")xi = ;Y + aiS(ﬂ) y 1= 1, e M,
Using an induction and Lemma 1, we conclude that =z, ---, 2, < eNe,
and hence

0 e, (v) = m, é gve;)) =0,

This contradicts the assumption that # is an isomorphism,

Next, suppose that H} decomposes. Let 7 be the idempotent
endomorphism of H} associated with an indecomposable direct sum-
mand of H} such that nm,e,(v) = 0.
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LeMMA 3. The restriction of n to Sy is a monomorphism,

Proof. Since X" is projective, 7 may be lifted to an endomor-
phism 7 of X", There exist y,;€ ¢Ae such that
775.7'(6) - éez(ym) ’ .7 - 11 e, M,
From the definition of T%, we have that
77(81"—1(8<>")) + Ej(’l))) € T;\L ’ -7 - 2! e,
and 7e,(s(\)) € T;. Thus,

7(&;_i(s(V)) + €;(v)) = é &(s(N)Yi,i—s + vyi) € T,
for =2, ..+, n, and
Te.s(\) = 3 esVysn) € Tk

Hence, there exist a,;;€ fAf such that

Sali,j—1 T VYi; = Ay, ;48 ,
SaYi,jm T VYi; = Qg 5iSa + Gy, ;40 ,
SalYin = Q1S
and

SA\Yin = QinSa + Qi_1,n? ,
for 7,7=2,8,--+,m .

Since fs,e = s, and fve = v, we may assume that a;€ fAf,1,7=
1,2, ---,n. Applying Lemma 2, we obtain,

UY;; = AU,
and

VY5 = Q0 , Zyj:]-’z:""n;
VYi; = Qiy,540 ,’:, .7 = 4, 37 s, M

and
Yi,n = 0 (mod eNe) , 1=2,8, -+, 1.
Suppose ¢ < 5. Then we have
VYi; = Q¥ = VWiqrjer = *** = Wignejon = 0.

Therefore, y;; = 0 (mod eNe). Suppose ¢ > 5. Then
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VYi; = Qi ja¥ = VYigpjs = 000 = WYijran »
Also,
VYir = VYan » k:1y2""yn°

Since 7m,(6,(v)) = 726, (VY,,) # 0, we have y,, % 0 (modeNe). From
these equations and the idempotence of 7 it follows that
e (mod eNe), ifi=4g.
9:; = {0 (mod eNe), if i<y,
Yi_j11,1 (mod eNe), if1>7.
Next assume that ¢ € Y™ and nz,(x) = 0. Then 7(x)e T}, There

exist elements r; of the socle of Ae such that x = > 7 ¢;; from
which the equation

— n i—1
(x) = 3, Eé(ﬁ + iji—j+1,1>
3=1 i=1
follows. Since 7(x) € T, there exist b, =0, b, +++, b, € Ae such that

i—1

-21 PiYijorn + 75 = bs(\) + b, 1=2 0,0,
“

Defining
o, =0,
a,=b ’
k-1
ak:bk-—zlajak_de, k:2,"',n,
i=

it follows that
e = 08(N) + A, E=1,---,m.

Thus, ¢ T7 and 7,z = 0. This proves Lemma 3,

From Lemma 3, we conclude that S? is contained in an idecom-
posable direct summand V, of H7. Calculation of H%/Sp = X"/Y"
shows that every direct summand of H} not equal to V, is isomor-
phic to Ae/S(Ae), S(Ae) the socle of Ae. Thus, V, =V, if and only
if Hy= Hr and hence V, %V, if N ped, This completes the
proof of the theorem,

3. Commutative rings.

THEOREM. If A is commutalive, then A 1s of finite type if and
only if the ideal lattice of A is distributive, Otherwise, A is of
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unbounded type, strongly so if the endomorphism ring of each
stmple A~-module is infinite.

Proof. It is sufficient to show that, if the ideal lattice of A is
distributive, A is generalized uni-serial (see [5]). Let e be a primi-
tive idempotent in A and consider the lattice of submodules of Ae,
Since A is commutative, these submodules are ideals in A. Suppose
the lattice contains a vertex

L2

V4
Lo

where we assume, without loss of generality, that the lattice from
(0) to L, is a chain. Then L, = N*"e for some k, and L, + L, S N'e,
Choose a, ¢ L; — L, v = 1,2, and define

Ly = Ae(a; + @) + L, .

The mapping ae — ae(a, + a,) -+ L, induces an isomorphism L,/L,=
Ae/Ne so that we have L,c L,CL,+ L,. Since L,NL,= L, it
follows directly that L, N L, = L, N L, = L, Clearly L, + L,= L, + L,=
L, + L,., Hence the ideal lattice of A contains the projective root

Ly + L2
Ly

Ly

which contradicts the assumption that the lattice is distributive. Thus,
A is generalized uni-serial and of finite type.

4. Lattices with vertex of order four. In this section we as-

sume that the center of the endomorphism ring of each simple A-
module is infinite,

THEOREM. If the ideal lattice of A contains a wvertex V of
order greater than three such that for some primitive idempotent
ec A, the image Ve of V is a vertex of order greater than three in
the submodule lattice of Ae, them A is of strongly unbounded module
type.
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Proof. There exists an ideal B, & A with distinect covers B, B,,
B,, B, such that B,eDBg,1=1,2 3,4. Since A/B, modules are A-
modules we can assume that B, = 0, Because of the theorem of §1,
we assume that the ideal lattice of A is distributive and hence that

SB=@®%B:.

=1

There exist primitive idempotents f; € 4 such that f;B,e # 0,1 = 1,2, 3, 4.
Let 4 ede be a set of representatives for the nonzero cosets of the
center of ede/eNe. Choose u; = fiu,e =#0€Be,7=1,2,3,4. Forne 4
we have Af;/Nf; = Au; = Au;n, t = 1, 2, 3, 4. For each positive integer
7 define

X" =@ S elde)
2=1
and denote the socle of X™ by Y. Define
T = {Z{ ea, + ¢y + dun + diwy) + €pn(bitty + cus + diuty):
dOZOy Qs bir Ciy dieAx/i = 13 ""n-}y

H; = X"T%,
and

Sk =Y"[T%.

Since the composition length of 7% is equal to 4% and the com-
position length of Y™ is greater than or equal to 8n, the composition
length of S7 increases without bound as % increases.

Let  # ¢ be elements of 4. We next prove that H} and H; are
not isomorphic, Suppose 6 is an isomorphism from H7 onto H2, Since

X" is projective, 6 can be lifted to a endomorphism 4 of X, There
exist X, «+ v, Lo, Yy, ** 7, Y2u I eAe such that

Feunle) = 35 (e
and

Geule) = 3w -
Since, 6r,&,(u,) #= 0, we have

ﬂ'u(; ei(uﬂli)) = 07[&%(“4) # 0.
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Thus, since u,€ M, there exists k, 1 < k < 2n, such that
Y € eNe .

Since wy; € Au, + Au, + Au, for 1 > n, we have wy; =0 for ¢ > n,
and hence, since ede¢/eNe is a division ring, y;<eNe, for 7 > m.
Similarly, fe,,(u,) € T implies ;€ eNe, for ¢ < n. It follows that

- n 2n
0(e,Us + €,U5) = Z{ e(usy;) + <=Z+1 euw;) € Ty .

Therefore, u.y; = u,2;., for 2 =1, .- n, and hence,
Yi = Xt (mOdeNe) @:17 ce, M

From this we obtain
- " n
O(e(U\) + gnlty)) = ; e(uy;) + ‘:2+1 e(uyi_n) € Th .
Hence, using the definition of 7% there exist d,, ---, d,€ A such that

UANY, = dﬂh# y
UNY; = dﬂhﬂ + dj_1u4 y J=2,+-,m,

and

uy; = d;u,, j=1 e m,
Replacing d;u, by u,y; in these equations, we have

WY, = UYL
and

UNY; = WY1+ WYy, 3=2 0, mn,
Since u,e M, a simple induction shows that

Y; € eNe , 1=1, .-, 0,

We conclude that H? and H} are not isomorphie,.

Next, suppose that H} decomposes and let » be an idempotent
endomorphism of H} such that nm,(e,(u;)) = 0. Since X is projective,
7 can be lifted to an endomorphism 7 of X". There exist y,;;cede

such that 7(¢;(e)) = >\ elvyi;). If 7 = mn, we have
2n
N(eu) = Z{ e(uyi;) e T

and hence
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For j < n, we have,

— n 2n
N(ei(us) + €j4n(s)) = ‘=21 &:(Ugys;) + iZH &i(Usli, j4n) € T .

Thus, by the definition of T%,
Yi; = Yismisn (modeNe), 1=t j=mn.

We infer that
- n 2n
N(En(Ue\) + Eou(thy)) = Z{ E(UNYin) + ) =Zn;r . E(UYinm) € Th .

Hence, there exist d,, ---,d, € 4, d, = 0, such that
UNY 5 = djuN + d;_ g, ,
and
WY = DU, , j=1,+, 10,

Replacing d;u, by uy;,, we have

UMNY 10 = Ugl1aN
and

UNY jn = UY juh + UYj1n §=2,,10,

Hence, for ¢ < n we obtain y;, = 0 (mod ¢eNe). And, since 7 is idem-
potent and eAe/eNe is a division ring, ¥,, = ¢ (mod eNe). Now suppose
k< mn. Then

N(En(wh) + €ppa() + €1pn(thy))

= é e UMYt + Ul nr) + .erl &(UYini) € TX .

Hence, there exist df, df, --., dkc A, d¥ = 0, such that
UNY i + U5, = AEUN + dE_ju,
and
WY = diu, , ji=1,, 0,

Replacing dku, by wy; we obtain wuy, .., =0, and %Y, 141 = UYj_1.1
j=2,+,n,k=1,---,n—1, It follows from these equations that
Y = 0, (mod eNe) for k =2, .-+, n, and ¥, = ¥;41.14: (mod eNe), J, k =
1,.-.,n—1, If < j=n, then

Yii = Yictjor = *** = Y1,j_is1 = 0 (mod eNe) .
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And, if n =1 = j,

Yi;s = Yicr5—1 = **° = Yi_j111 (mOd eNe) R

These results imply

0 (mod eNe) , ifi<jorjs=n<i,
Y;; = e (mod eNe) , if =43,
Yiejun(modeNe), if j<ism, orn<j<i.

We shall now show that the restriction of 7 to S} is 2 monomorphism
and that 7(Sy) = Sz Suppose that @ € Y is such that m,(s) is an

element of the kernel of 7,
5= 3w .

We have pz,\(x) = 7,7(¢) = 0, and so
7(w)e T%.
7(w) = 3} 7(x)

2n  2n
= Z Z &% Y5)
J=13=1
n
= 15
1

k2

J

Thus, there exist a,, b;,¢;,d;, 1 =1, -+, n in A, d, = 0 such that

n

2n
> 2 AT Yijran) + j;n;«rl

2n
T Y i)
=7

1 4=

2‘1 T = QU + cus + dun + d;_u, ,

o

and
_}f{mmyu = bjuy, + c;us + dyu, , for e =1,2,--+,m.
=

Using the definition of T7%, it follows that
T; = Uy + YUy + O UN + 0, ,
and
Tipn = Bile + VijUhs + 0%, F=1,--e,m—1,
where a, = a,, 8, = b, 7, = ¢, 0, = 0, 6, = d, and
AUy = Uy — Ep UYoy — =+ — KUY,
Byt = bythy — By Uslor — +++ — BihYs

TiWs = CrpUs — Vp_aWUsYor — **° — ViUsYps
0xUy = Aty — Oy Ulfsy — =+ — OUYy: for k>1.
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Hence, r,(x) = 0, and the restriction of » to S} is a monomorphism.
The proof can now be completed as in §1.
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