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Using the concepts of a semi inner-product and a dissi-
pative operator, it is proven that if X is a complex Banach
space (under the supremum norm) of bounded complex valued
functions on a set S, p is a bounded positive function on S
which is bounded away from zero, pX c X, and A is the
infinitesimal generator of a strongly continuous (class (Co))
semi-group of contraction operators in X, then pA is also the
infinitesimal generator of such a semi-group.

The notion of a semi inner-product was introduced by G. Lumer
in [3].

DEFINITION 1. A semi inner-product for a complex (real) Banach
space X is a function [ , ] from X x X into the complex (real)
numbers which satisfies

[ax + βy, z] = a[x, z] + β[y, z] ,

\[x,z]\£\\x\\-\\z\\,

and

[a, a] = 11*11".

There is at least one semi inner-product for every Banach space X,
because we can define [x, y] — f(x), where / is a bounded linear
functional on X such that | | / | | = \\y\\, and \f(y)\ = \\y\\2 (see [4])

By an operator in a Banach space X, we mean a linear transfor-
mation (not necessarily bounded) from a subspace of X to a subspace
of X. The notion of a dissipative operator in a Banach space is
treated by G. Lumer and R. S. Phillips in [4],

DEFINITION 2. An operator A in a Banach space X is said to be
dissipative (with respect to a given semi inner-product for X) if

re [Ax, x] ^ 0

for all x in the domain of A.
By a contraction semi-group in a Banach space X we mean a

strongly continuous semi-group of contraction operators in X which
is of class (Co) (see [2]). A contraction operator in X is a bounded
linear transformation T from X into X with || T\\ ^ 1. Lumer and
Phillips have given the following characterization [4, Theorem 3.1] of
the infinitesimal generator of a contraction semi-group.
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THEOREM (Lumer and Phillips). Suppose A is an operator in
a Banach space X, the domain of A is dense in X, and [ , •] is a
semi inner-product for X. Then A is the infinitesimal generator
of a contraction semi-group in X if and only if A is dissipative
with respect to [ , •], and the range of I—A is all of X, where I
denotes the identity transformation on X.

THEOREM. Suppose S is a set, X is a complex Banach space
(under the supremum norm) of bounded complex valued functions
on S, p is a bounded positive function on S which is bounded away
from zero, pXaX, and A is the infinitesimal generator of a
contraction semi-group in X. Then pA is also the infinitesimal
generator of a contraction semi-group in X.

Proof. Let U denote the Banach algebra of all bounded complex
valued functions on S, and let Sx denote the set of all nonzero mul-
tiplicative linear functional on S. It follows from [1, pp. 272-277],
especially [1, Corollary 19, p. 276], that

(i) if m is in Slf and q is a nonnegative function in U, then
m(q) ^ 0, and

(ii) if x is in U, then there is an m in Ŝ  such that \m(x)\ — \\x\\.
For each x in X, let mx denote an element m of S± such that | m(x) | =
|| x ||, and for each x, y in X, let

[x, y] = my{x)[my{y)Y ,

where the * denotes complex conjugation. Then [ , •] is a semi inner-
product for X; it is the only one to be used from this point on. A
dissipative operator in X will mean one which is dissipative with respect
to this semi inner-product.

If q is a bounded nonnegative function on Sf and qXaX, then

re [qAx, x] — mx(q) re [Ax, x] ^ 0 ,

for all x in ®(A), the domain of A, since A is dissipative by [4,
Theorem 3.1], Therefore, qA is dissipative. Also, the domain of qA
is S)(A), which is dense in X by [2, Theorem 12.3.1, p. 360]. If

sup 11 - q(s) I < 1/2 ,
ses

then \\I — q\\, the operator norm of I — q, is less than 1/2, so that
I — qA is invertible, since

I - qA = I - A + (7 - q)A = {I + (I - q)AR(l, A)}(I - A) ,

and
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by [2, Theorem 12.3.1, p. 360]. Thus the range of I-qA is all of X,
and qA generates a contraction semi-group in X by [4, Theorem 3.1].

Since F(p)XaX for every polynomial F, and p is bounded and
nonnegative, it follows from the classical Weierstrass theorem that
p{ιln)X(zX for every positive integer n. Choose n so that

sup 11 — [p(s)]illn) I < 1/2 ,
sβS

and let r = p{ί'n\ This is possible because the range of p is contained
in a closed and bounded interval of positive numbers. By what was
shown in the previous paragraph, rA generates a contraction semi-
group in X. If 1 ^ j < n, and rJ'A generates a contraction semi-group
in X, then rj+]A does also, for

rj+ΐA = τ(rjA) ,

and we can substitute r for q and rjA for A in the argument given
in the previous paragraph.

REMARK. An argument similar to the one given will establish
the theorem if X is taken to be a real Banach space (under the
supremum norm) of bounded real valued functions on S, and the rest
of the hypothesis remains the same. Also, we could take A to be
the generator of a class (Co) semi-group [T(t); 0 g ί < ° ° ] of operators
in X such that for some ω > 0,

l|Γ(ί)| | ^ eωt for t ^ 0 .

If

T(t) = e~ωtT(t) for t ^ 0 ,

then [Γ(£)] is a contraction semi-group in X and has the generator
A — A — ω.

If

V(t) = eωtpV(t) for ί ^ 0 ,

where [F(£); 0 <; £ < oo] is the contraction semi-group generated by
pΆ, then [V(t)] is a class (Co) semi-group of operators in X,

|| F(ί)| | g βωί!!ί)11 for £ ̂  0 ,

and [F(£)] is generated by pA. The author wishes to express his
thanks to the referee for his suggestions.
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