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HOMOLOGICAL DIMENSION OF ORE-EXTENSIONS

N. S. GOPALAKRISHNAN AND R. SRΪDHARAN

Let £ be a ring with unit element and let R — S{x, d} be
the Ore-extension of £ with respect to a derivation d of S.
Our object in this paper is to show that I. gl. dim R = 1 +
l.gl. άimS, if 5 is a commutative Noetherian ring and d is
suitably restricted.

It was shown in [3] that 1. gl. dim R :g 1 + 1. gl. dim Sm While equality
does not hold in general, we show that it does under suitable conditions
(Theorem 2, § 5).

This is achieved in three steps. The first is to show that for any
ring S, any ϋ?-module M and an S-projective resolution for ikf, there
exists an iϋ-projeetive resolution of M which "lifts" the given resolution
(Theorem 1, § 3). The next step is to use this resolution to prove
Theorem 2 in the special case in which S is a local ring (Proposition
1, §4). The final step consists in deducing Theorem 2 by the method
of localisation.

The authors would like to express their thanks to M. P. Murthy
and A. Roy for their kind help during the preparation of this paper.

2* Preliminaries on Ore-extensions* Let S be a ring with unit
element (denoted by 1), which is not necessarily commutative, and let
d be a derivation of S into itself. Let S{x, d} denote the Ore-extension
of S with respect to d (see [5]). We recall that R — S{x, d} is the ring
generated by an indeterminate x over S with the relations xs — sx — ds
for every se S. We identify S with a subring of R. We collect here
some properties of R which will be used in the later sections.

(2.1) For any ring Sr, a ring homomorphism φ: S —> S' and an
element a e S\ with the property aφ(s) — φ(s)a = φ(ds), there exists a
unique ring homomorphism ψ\ R—+S' such that φ(x) — a and φ\S = φ.
(In fact R can be characterised by this property).

The proof is straightforward.

(2.2) Let Su S2 be rings with derivations du d2 respectively and
let φ: Si—>S2 be a ring homomorphism such that d2oφ = φodl9 Then
there exists a ring homomorphism φ;Rι-+R2 such that φ \ S1 = φ.

Proof. This follows from (2.1) by taking S' = R2 and a — xeR2.

(2.3) A left S-module M can be converted to a left-iϋ-module if
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and only if there exists an fe Homz(Λf, M) such that f(s.m) — s.f(m) =
ds.m, for every se S, me M.

Proof. If M is an ΐί-module we may take / e Homz(M, M) defined
by f(m) = x.m. The converse follows from (2.1) by taking

S* = Homz(M, M),a = f and φ: S -> S'

to be the mapping which defines the S-module structure on M.

(2.4) If M is a protective left S-module, then M can be converted
into a left l?-module.

Proof. We first remark that S can be considered as a left i?-module.
In fact, with the notation of (2.3) we choose / — de Homz(>S, S). By
a direct sum argument, it is clear that any free left S-module can be
regarded as an i?-module. Now let M be any protective left S-module
and let M be a direct summand of a free S-module F. Since F is a
left i?-module, there exists an fe Homz(,P, F) such that f(s.m) —
s.f(m) = ds.m; se S, me F. Let p: F—+M be an S-projection of F on
M. It is easily seen that g — fop\M satisfies g(s.m) — s.g(m) — ds.m.
Hence M can be regarded as an ί?-module.

(2.5) R becomes a filtered ring by setting FPR — Σo î̂ D S.x\
The associated graded ring E°(R) of R is isomorphic to S[x], the
usual polynomial ring in one variable x over S.

Proof. See [3].

3* Lifting of resolutions* Let M be a left E-module and let

• > Xi > Xi_x > > Xo > M > 0

be an S-projective resolution of M. Our aim in this section is to
construct an J5-projective resolution which "lifts" the above resolution.

We first prove the following

LEMMA. There exist fi e Hom^X^, Xt) such that
( i ) fi(s.a) - s.fi(a) = ds.a for seS,ae X^
(ii) diofi=fi_1odi,i'^:l, and εofQ=foε,

where fe Hornz(Af, M) is the mapping given by f(m) — x.m.

Proof. Since Xo is S-projective, it follows from (2.4) and (2.3)
that there exists an fi e Homz(X0, Xo) such that fό(sa) — sfό(cή = ds,a
for seS, aeXQ. The map εo/0' — foe : XQ—>M is easily verified to
be S-linear. Since XQ is S-projective there exists an / " e Homs(X0,
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such that eo/0' - / o s = εo/0". We choose fo=fό — f". Then (i) and
(ii) are verified for i = 0.

Assume inductively that /5 0 ^ j" 5= i — 1 have already been
defined satisfying (i) and (ii). Since X{ is S-projeetive, there exists
// e Homz(Xί, Xi) such that f!(sa) - sf{{a) = eZsα for s e S , α e Xί#

The map d< o// — / ^ o c^: Jf,. —> χi_1 is easily verified to be S-linear.
We have, (with the convention ft — f and d0 = ε),

— —fi-2°di^1odi (by induction)

= 0.

Hence the image of X{ by (?*©// — f^odi is contained in the kernel
of di_x — Im. di. Since JSΓ̂  is S-projective, there exists //' e Homs(Xί, Xt)
such that diofl - f^odt = ^o// ' . We may choose / ; = / / - / / ' and
/< satisfies (i) and (ii). This completes the proof of the lemma.

We set X_! = 0 and define for i ^ 0

where y is a dummy. We set d0 = 0 and define for i ^ 1, the
J?-homomorphism d̂ : X̂  —> X^i by

and

d*(y Θ «0 = 2/ ® d<-iα' + (-l)'- 1^ ® α' + (-1)*1 ® /ί-i(α'), α' € X ^ .

We define the jB-homomorphism έ: Xo = i? ® Xo —> Λί by

THEOREM 1. T%e sequence

(*) ^ J U x ^ , ,χo-l^j|f ,o

is αw R-projective resolution of M.

Proof. For a e Xu εod^l 0 a) = ε(l (g) ̂ α) = εd^α) = 0, and for

α' e Xo, ε o ^(y 0 a') = έ(a? (g) α' - 1 (g) /0(α')

For i ^ 1, we have

di-ίodi(l 0 a) — 1 0 ^_xodfiί = 0, α e X; ,

and
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= 0 0 ^-2°^-i + (- l) ' -^ 0 d ^ α ' + (-1) M 1

+ (-I)'- 1* 0 ^ + ( - l ) Ί 0 dt^of^of

- ( - l ) Ί <g> ( d w o / u - Λ-tod^,

(with the convention that /_x = 0)

= 0.

Thus (*) is a complex of left .fi-modules. To prove that the complex is
acyclic, we define a suitable filtration on the complex whose associated
graded is acyclic. By a well-known lemma on filtered complexes the
acyclicity of (*) follows immediately. For i ^ 0, let

9X, = FPR <g> X, + F^R. y
s s

where {FPR} is the filtration on R defined in (2.5). We define

FPM = M for every p .

I It is easily seen that {FpXi\ defines a filtration on X { and that
di(FpXi) c FpZi-! for i ^ 1 and ε(i^X0) c Fpikf. We thus get for

Γp ^ 0 the complex

> E&Xd - ^ El{X^) > > ^ 0 (Z 0 ) - ^ E&M) > 0 .

We note that E&M) = 0 for p Φ 0 and £Ό°(M) = ΛΓ.
Let S[x] denote the polynomial ring in one variable x over S.

We regard M as an S[^]-module by setting xM = 0. We set Xίt = 0
and define X[ for i ^ 0 by

-3Γ/ = Sp[a?] (8) Xi + S^lxl-y® X^ .
S 8

We set cZJ = 0 and for i ^ 1 define the left S[#]-homomorphism

d'i(l 0 α) = 1

We define the S[α;]-homomorphism e':Xi~+M by setting

s'(l 0 a) = ε(α) .

It is easily verified [4, p. 210] that (XI, d[) is a left S[#]-projective
resolution for M.

Let jSpfcc] be the pth homogeneous component of the usual gra-
dation of S[x] given by powers of x. We introduce a gradation on
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X- by setting
XI* = S9[x] <g> X, + SUΦ ® Xi-ι.

We take the trivial gradation on M i.e., M* = 0 for p > 0 and ikP = M.
It is easily seen that d[(X!*) c X& and 6'(-3Γ0'

p) c Mp for every p. We
thus get for every p an exact sequence

(**) > x/p _ ! u ^ > > χo'*> -ί!i> M p > 0 .

Clearly ^(X*) ^ X/p and E&M) ** Mp for every-p. Since for any
r e Fp^R and a'e Xi_u we have r $ξ>/^(a') e Fp^Xt^, it follows that
EKd ) = d?. Since (**) is exact, it follows that {E&Xi), Eo

v{di)) is
exact and hence (*) is exact. Since Xι is clearly i2-projective, the
theorem is proved.

4* The case of local rings* Our aim in this section is to prove
the following.

PROPOSITION 1. Let S be a (commutative, Noetherian) local ring
and let 2JΪ denote its unique maximal ideal. Let d be a derivation of
S such that d(S) c 3JΪ and let R = S{x, d}. Then

l.gl. dim R = 1 + gl. dim S .

For proving this proposition, we need the following.

LEMMA. Let S be a commutative ring and let M be an R-rnodule.j
Suppose

0 ,χn±Uχn_t!hiX >XQ >M >0

is an S-projective resolution of M. Assume that the following
conditions hold.

(1) Xn is S-free of rank 1.
(2) There exists an S-module N with xN = 0 and ExtJ(Af, N) Φ

(0).
Then hdRM = n + 1.

Proof. Using the complex (*) of Theorem 1, we find that hdjή g
n + 1. We now compute Ext£+1(^, Nf) for any jβ-module N'. We have

where β w is the set of all g e Hom^(X%, iV') such that there exist
g1 e Hom^(X%, N') and g2 e Roms(Xn_lf N') with

for any α: 6 JSΓΛ.
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Let β be a free generator of Xn as an S-module and let fn(β) ~
sβ; se S. If g e Bn, we have

9(β) = gt(dj3) + ( - l ) - 1 ^ - s)gi(β) .

Let θ be the automorphism of R such that θ(x) — x + s and θ \ S ~
identity. (This exists in view of (2.1)). If we choose N' — ΘN (i.e.,
N considered as an i?-module through θ), we find g(β) = g2(dnβ)
and hence g(a) = g2{dna) for any a e Xn. Thus, Bn = B\~
{g e Ή.oms(Xnj N') \ g(μ) = g2(dna) for some g2 e Hom^(X%_1Λ

Γ/) for every
a G X%__i}. However, using the resolution (X ,̂ di) for ikf to compute
Ext, we find ExtS(Λf, N') ** Hom^(X., N')jBi. Hence

1(M, N') ?** ExtS(Λf, N')

** ExtJ(M, iSΓ) ^ (0) ,

since N and iV' are isomorphic as S-modules. This proves the lemma.

Proof of proposition. By [2, p. 74, Prop. 2], it follows that
gl. dim R ^ gl. dim S. Thus, if gl. dim S = oo, we have gl. dim R—oo
and the proposition is proved. We therefore assume that gl. dim S —
n < oo. If I f = S/2)ΐ, we have hdsM = n. Let

0 >χn-^χn_1 > >XQ >M >0

be the "Koszul resolution" for M [1, p. 151]. Since Xn=E°(yly ••,#*),
where Sf ( ^ , yn) is the t^th component of the exterior algebra on
Vu ' , 2/» o v e r S, condition (i) of the above lemma is satisfied. Since
d(S) c SDt, it is clear that M" can be regarded as an I?-module satisfying
xM=0 (See (2.3)). Since ExtS(Jlf, M) Φ (0), [1, p. 153], condition (2)
of the lemma is satisfied with N = M. Thus, by the above lemma,
we have hdRM — n + 1. Hence gl. dim R ^ n + 1. Since gl. dim iϋ ^
Wr + 1 [6, Th. 1 or 3], the proposition is proved.

5* The case of Noetherian rings* In this section, we prove
the following

THEOREM 2. Let S be a commutative Noetherian ring and let d
be a derivation of S suck that any one of the following two conditions
is satisfied:

( 1 ) d(S) c Radical of S,
( 2 ) d(S) generates a proper ideal of S and Krull dim Sm is

the same for all the maximal ideals 9Jί of S.
If R — S{x, d}, we have

I. gl. dim R = 1 + gl. dim S .
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Proof. As in the proof of Proposition 1, we need only prove that
1. gl. dim R ^ 1 + gl. dim S assuming gl. dim S < °o. Since gl. dim S =
sup^ gl. dim S^ where 2JΪ runs over all the maximal ideals of S, it is
clear that under either of the conditions of the theorem, there exists
a maximal ideal -Dΐ such that gl. dim S = gl. dim S^ and d(S) c 3DΪ.
The derivation d of S induces a derivation d of S^. if we set

d f ± \ = ds- s' ~ s- ds' ; s9 s'e S, s'e

It is clear that d(Sm) c %JlSm. Hence by Proposition 1, § 4, we have

1. gl. dim Sm{x, d} = 1 + gl. dim Sm

= 1 + gl. dim S .

Thus, the theorem will be proved if we prove the following

LEMMA. If 9Ji is any maximal ideal of S, we have

1. gl. dim S{x, d} ^ 1. gl. dim Sm{x, d} .

Proof of the lemma. Let us set R = S{x, d} and R = Sm{xf d}.
Let η: S —> Sm denote the ring homomorphism defined by 7)(s) — class
of s/1. Since d°η = ηod, η induces (see (2.2)) a ring homomorphism
η:R->R such that Ύ]\S = η.

We first prove the following two statements:
(1) R is JS-flat as a right jβ-module (through )?).
(2) If_M is any left 5-module, there exists a left jB-module M'

and a left jR-isomorphism M ^ R 0 Λ M'.
The left S^-isomorphism φ : S^ ®#R—+R given by φ>(l 0 a?*) =

aj*GjB satisfies φ{l®f) = η(f) for any / G J B . We have

Thus, <ρ is an isomorphism of right J?-modules. Since S^ 0^ R is right
.β-flat, (1) is proved. Let

F1-ϊ-+F-ϊ-+M >0

be an exact sequence where Fx and F are β-free with bases {ea} and
{fβ} respectively. We then have

—)Σ — W Λ ; aaβ e R, sa e S - 2ft .

Let # be the 5-automorphism of Fλ defined by θ(ea) = η(8a)ea. Let
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X' = Xoθ. We then have

and the sequence

is exact. Let F1 (resp. F) be the free iϋ-module generated by {ea}
(resp. {fβ}) and let X":F1-+F be the i2-homomorphism defined by

It is easily seen that if we take Mf — c o ker λ", we have M f& R (g) Λf \

This proves(2). We now complete the proof of the lemma.
Let M be any left 5-module and let Mf be a left i?-module such

that (2) is satisfied. Let

,X%J^X^ > >X0 >M' ,0

be a resolution of Mr as a left i?-module. Then

R ® Xn^ > > R®X0 > M > 0
R R

is exact in view of (1). Since Rξ&Xi is .R-projective, it follows that

(R (g) Xi9 1 0 di) is an i?-projective resolution of M. In particular,
R

we have hd-^M g hdBM' ^ gl. dim R. Since Λf is arbitrary, it follows
that gl. dim R ^ gl. dim R. This proves the lemma and hence the
theorem.

REMARK. Let S = K[xu , xn] be the polynomial ring in n vari-
ables over a field K. It is well-known [7, Chap. Ill Cor. 4 to Th. 5]
that Krull dimSs^ is the same for all maximal ideals 3Ji of S. Let
d be a iΓ-derivation of S given by d(Xi) — fim Then the derivation d
satisfies condition (2) of Theorem 2 if and only if fif 1 ^ i ^ n are
not coprime and in this case we may apply the theorem and we have
gl. dim R — n + 1. This includes the special case of Theorem 1 of
[6] in which K is a field.
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