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HOMOLOGICAL DIMENSION OF ORE-EXTENSIONS

N. S. GOPALAKRISHNAN AND R. SRIDHARAN

Let S be a ring with unit element and let R = S{x, d} be
the Ore-extension of S with respect to a derivation d of S,
Our object in this paper is to show that . gl. dimR=1+
l.gl. dim S, if S is a commutative Noetherian ring and d is
suitably restricted.

It was shown in [3] that I. gl. dim R <1 + L. gl. dim S. While equality
does not hold in general, we show that it does under suitable conditions
(Theorem 2, §5).

This is achieved in three steps. The first is to show that for any
ring S, any R-module M and an S-projective resolution for M, there
exists an R-projective resolution of M which “lifts” the given resolution
(Theorem 1, §3). The next step is to use this resolution to prove
Theorem 2 in the special case in which S is a local ring (Proposition
1, §4). The final step consists in deducing Theorem 2 by the method
of localisation.

The authors would like to express their thanks to M. P. Murthy
and A. Roy for their kind help during the preparation of this paper.

2. Preliminaries on Ore-extensions. Let S be a ring with unit
element (denoted by 1), which is not necessarily commutative, and let
d be a derivation of S into itself. Let S{x, d} denote the Ore-extension
of S with respect to d (see [5]). We recall that R = S{z, d} is the ring
generated by an indeterminate x over S with the relations s — sz = ds
for every s€S. We identify S with a subring of R. We collect here
some properties of R which will be used in the later sections.

(2.1) For any ring S’, a ring homomorphism ¢:S — 8" and an
element a € §’, with the property ap(s) — @(s)a = @(ds), there exists a
unique ring homomorphism &: R— S’ such that @(x) = « and @|S = .
(In fact R can be characterised by this property).

The proof is straightforward.

(2.2) Let S,, S, be rings with derivations d,, d, respectively and
let ¢: S, — S, be a ring homomorphism such that d,op = pod,. Then
there exists a ring homomorphism @: R, — R, such that @|S, = o.

Proof. This follows from (2.1) by taking S’ = R, and @ = ¢ R,,

(2.3) A left S-module M can be converted to a left-R-module if
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and only if there exists an fe€ Homz(M, M) such that f(s.m) — s.f(m) =
ds.m, for every se S, me M.

Proof. If M is an R-module we may take fc Homy,(M, M) defined
by f(m) = z.m. The converse follows from (2.1) by taking

S" = Homy(M, M), « = f and @: S — 8§’
to be the mapping which defines the S-module structure on M,

(2.4) If M is a projective left S-module, then M can be converted
into a left R-module.

Proof. We first remark that S can be considered as a left R-module,
In faet, with the notation of (2.3) we choose f = d e Homy(S, S). By
a direct sum argument, it is clear that any free left S-module can be
regarded as an R-module. Now let M be any projective left S-module
and let M be a direct summand of a free S-module F. Since F' is a
left R-module, there exists an fe Homy(F, F') such that f(s.m) —
s.fim) =ds.m;seS,meF. Let p: F— M be an S-projection of F on
M. It is easily seen that g = fop| M satisfies g(s.m) — s.g(m) = ds.m.
Hence M can be regarded as an R-module.

(2.5) R becomes a filtered ring by setting F, R = >, S.2%
The associated graded ring E°(R) of R is isomorphic to S|[x], the
usual polynomial ring in one variable x over S.

Proof. See [3].

3. Lifting of resolutions. Let M be a left E-module and let

X -Yx ... X M—0

be an S-projective resolution of M, Our aim in this section is to
construct an R-projective resolution which “lifts” the above resolution.

We first prove the following

LEmmA. There exist f; € Homy(X;, X;) such that
(1) fis.a) — s.fi(a) = ds.a for se S, ae X;;
(i1) diof; = fiod;, i =1, and eof, = fog,
where fe Homy(M, M) is the mapping given by f(m) = x.m.

Proof. Since X, is S-projective, it follows from (2.4) and (2.3)
that there exists an fj € Homg(X,, X,) such that fj(sa) — sfy(a) = ds,a
for se S,ac X,. The map cof] — foe:X,— M is easily verified to
be S-linear. Since X, is S-projective there exists an f;’ ¢ Homg(X,, X,)
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such that eof; — foe =c¢eofy’. We choose f,=f, —f;'. Then (i) and
(ii) are verified for ¢ = 0.

Agsume inductively that f; 0<j <7 —1 have already been
defined satisfying (i) and (ii). Since X, is S-projective, there exists
fle Homy(X;, X;) such that f/(sa) — sfli{a) =dsa for seS, aec X,
The map d;of] — fiiod; : X; — X,_, is easily verified to be S-linear.
We have, (with the convention f; = f and d, = ¢),

d;_(diofi — fimody) = —d;_sof; sod;
= —f;,0d;_;od; (by induction)
=0,
Hence the image of X; by d;of! — fi.od; is contained in the kernel
of d;_; =Im.d;. Since X; is S-projective, there exists f{’ € Homg(X;, X;)
such that d;of] — fi_iod; = d;of!. We may choose f; = f{ — f!’ and

f: satisfies (i) and (ii). This completes the proof of the lemma,
We set X_, = 0 and define for 7 = 0

X=R®QX,+ RyQ X, _,,
8 S
where ¥y is a du_mmy. We set d, =0 and define for ¢ =1, the
R-homomorphism d;: X, — X, , by
and
dyQ@a)=yQdid + (-2 Qa + (—1)1 R fia), d’ e X, ;.
We define the R-homomorphism &: X, = R®Q X, — M by
8

(Ll Ra) =c¢ca),ac X,.

THEOREM 1. The sequence
(*) s Xi di X’Z——l e XO : M 0

s an R-projective resolution of M.

Proof. For ac X, éod(1RQa)=ilRda) = ed(a) =0, and for

aeX,iod(y@a)=rQRa — 1R fi(a))
= fog(@) —cof (') =0.
For 7 = 1, we have
Ji_logi(l ® a) — 1 ® d.,;_lodia = O, Qe .X,,; y
and
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diso Jz(?/ R a)
= Ji~1[?/ Rdid + (1) "2Qa' + (—1)1Qfia)], e X;_,
=Y Qdisodi, + (1) 2R d;id + (1)1 Q fidi
+ (=172 @ dind’ + (—1)'1 Q disofia’
= (“Dil X ([diofios — fiaodiy),
(with the convention that f_, = 0)
=0,
Thus (*) is a complex of left R-modules, To prove that the complex is
acyclic, we define a suitable filtration on the complex whose associated

graded is acyclic. By a well-known lemma on filtered complexes the
acyeclicity of (%) follows immediately. For ¢ = 0, let

FPXi:FpR®Xi+Fp—-lR-y®Xi-—1y
8 s

where {F,R} is the filtration on R defined in (2.5). We define
F,M =M for every p.
fIt is easily seen that {F,X;} defines a filtration on X; and that

d(F,X)cF,X,., for i =1 and &F,X,)C F,M. We thus get for
Fp = 0 the complex
_ . EXd) - = E@®
- — E)(X)) — E)XX;,) — -+ — E)(X,) — E}(M)—0.

We note that E)(M) =0 for p = 0 and E)(M) = M.

Let S[x] denote the polynomial ring in one variable z over S.
We regard M as an S[x]-module by setting «M =0, We set X!, =0
and define X/ for 7 = 0 by

X! = §,[«] @ X; + S,y @ X,
We set d,=0 and for 7 =1 define the left S[x]-homomorphism
di: X! — X!, by
dil®a)=1Rda, ac X;,
dyRad)=yQd;_ ' + (1) "2Qa’,a’e X;_, .
We define the S[x]-homomorphism ¢&: XJ — M by setting

flRa)=c¢).

It is easily verified [4, p. 210] that (X{, d}) is a left S[x]-projective
resolution for M.

Let S,[x] be the p** homogeneous component of the usual gra-
dation of S[x] given by powers of #. We introduce a gradation on
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X! by setting
Xir = S,[a] @ X + S,-loly @ Xi .

We take the trivial gradation on M i.e., M? =0 for p>0and M° = M,
It is easily seen that d}(X/?) c X/?, and &'(X;*) C M* for every p. We
thus get for every p an exact sequence

’
» el®

d.
(**) cee X;P * X:_pl e .XO'p M» 0 .

Clearly EY(X,) ~ X/» and EYM)~ M? for every p. Since for any
reF, Rand a'c X;_,, we have rQ fi_(a")e F,_,X;_,, it follows that
EXd;) = d/». Since (+x) is exact, it follows that (EYX)), EXd,)) is
exact and hence (x) is exact. Since X; is clearly R-projective, the
theorem is proved.

4. The case of local rings. Our aim in this section is to prove
the following,

ProrosITION 1. Let S be a (commutative, Noetherian) local ring
and let M denote its unique maximal ideal. Let d be a derivation of
S such that d(S)c M and let R = S{z,d}. Then

lLgl,dmR =1+ gl.dimS.

For proving this proposition, we need the following.

LEMMA. Let S be a commutative ring and let M be an R-module. §
Suppose

0— X, -2, X,

dn—l’ . XO M O
is am S-projective resolution of M. Assume that the following
conditions hold,

(1) X, is S-free of rank 1,

(2) There exists an S-module N with «N = 0 and Ext(M, N) +
(0).

Then hd,M = n + 1.

Proof. Using the complex (x) of Theorem 1, we find that hd, M <
% + 1. We now compute Extz*'(M, N') for any R-module N’, We have

Exty*(M, N') = Homy«(X,, N')/B"

where B is the set of all ge Homg(X,, N’) such that there exist
9: € Homy(X,, N’) and g¢,€ Homy(X,_,, N') with

9(@) = g(d,@) + (—1)"xg @) + (—1)"g:(f(a))
for any ae X,.
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Let 8 be a free generator of X, as an S-module and let f,(8) =
sB;seS. If ge B", we have

9(8) = g:(d.B) + (—=1)" (& — 8)g.(B) .

Let 6 be the automorphism of R such that () =« + s and 0|S =
identity. (This exists in view of (2.1)). If we choose N’ = ,N (i.e.,
N considered as an R-module through 4), we find g(8) = g.(d.5)
and hence g¢g(a) = g)(d,«) for any aecX,. Thus, B"= B}=
{g € Homy(X,, N") | g{a) = g,(d,cx) for some g,c Homg(X, N’) for every
ae X, .}. However, using the resolution (X;, d;) for M to compute
Ext, we find Ext(M, N') ~ Homy(X,, N')/Br. Hence

Exty™(M, N') ~ Extx(M, N')
~ Exty(M, N) = (0),

since N and N’ are isomorphic as S-modules. This proves the lemma,

Proof of proposition. By [2, p. T4, Prop. 2], it follows that
gl.dim R = gl. dim S. Thus, if gl. dim S = «, we have gl. dim R = co
and the proposition is proved, We therefore assume that gl. dim S =
n < oo, If M= S/, we have hdsM = n. Let

0 X, - X e X M —— 0

be the “Koszul resolution” for M [1, p. 151]. Since X,=E;:(y, ***,¥Y.),
where ES(y, -+, ¥.) is the mth component of the exterior algebra on
Yy, *, Y. over S, condition (i) of the above lemma is satisfied. Since
d(S)c M, it is clear that M can be regarded as an R-module satisfying
M = 0 (See (2.3)). Since ExtyM, M) #+ (0), [1, p.153], condition (2)
of the lemma is satisfied with N = M. Thus, by the above lemma,
we have hd,M = n + 1. Hence gl.dim R = x4+ 1, Since gl.dim R <
n -+ 116, Th, 1 or 3], the proposition is proved.

5. The case of Noetherian rings, In this section, we prove
the following

THEOREM 2. Let S be a commutative Noetherian ring and let d
be a derivation of S such that any one of the following two conditions
is satisfied:

(1) d(S)c Radical of S,

(2) d(S) generates a proper ideal of S and Krull dim Sg, is
the same for all the maximal ideals MM of S.

If R = S{z, d}, we have

l.gl.dimR=1+ gl.dim S .
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Proof. As in the proof of Proposition 1, we need only prove that
Legl.dimR=1-+ gl.dimS assuming gl. dim S < ., Since gl.dimS =
supyy, gl. dim Sy, where 9 runs over all the maximal ideals of S, it is
clear that under either of the conditions of the theorem, there exists
a maximal ideal 9t such that gl. dim S = gl. dim Sy, and d(S) < M.
The derivation d of S induces a derivation d of Sy if we set

g(g) =088 =508 g geg seMm,
s s
It is clear that d(Sg;) C MSy,. Hence by Proposition 1, §4, we have

L gl. dim Sg{w, d} = 1 + gl. dim S,
=1+ gl.dimS.

Thus, the theorem will be proved if we prove the following

LEMMA. If M is any maximal ideal of S, we have

1. gl. dim S{z, d} = 1. gl. dim Syple, d}.

Proof of the lemma. Let us set R = S{z,d} and R = S,{x, d}.
Let 7%:S— Sy, denote the ring homomorphism defined by 7(s) = class
of s/1. Since doy = yod, 7 induces (see (2.2)) a ring homomorphism
7: R— R such that 77| S = 7.

We first prove the following two statements:

(1) R is R-flat as a right R-module (through 7).

(2) If M is any left R-module, there exists a left R-module M’
and a left R-isomorphism M~ R ®, M'.

The left Sy,-isomorphism ¢ : Sy ®sRE— R given by p(1 ® ) =
v'e R satisfies (1 ® f) = 7(f) for any fe B. We have

P & f9) = 7(f9) = 7(F)T(9) = (L R F)7(9) .

Thus, @ is an isomorphism of right E-modules. Since Sy, @s R is right
R-flat, (1) is proved. Let

-
A

F, FEt. M 0

be an exact sequence where F, and F' are R-free with bases {e.} and
{fe} respectively, We then have

Meo) = 77(%) % -}}- (@ap)fs; ApE R, 8.€S — M.

a

Let 6 be the R-automorphism of F, defined by 6(e.) = 7(s.)e.. Let
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AN =nof. We then have

)‘”(eu) = Zl %’(aaﬁ)fﬁ y

B
and the sequence

2P —o

is exact. Let F, (resp. F') be the free R-module generated by {e.}
(resp. {f5s}) and let \': F', — F' be the R-homomorphism defined by

?\,"(ea) = % a/asfg .

It is easily seen that if we take M’ = coker A", we have M~ RQ M’.
R

This proves(2). We now complete the proof of the lemma,
Let M be any left R-module and let M’ be a left R-module such
that (2) is satisfied. Let

X, X, e s Xy M —— 0

be a resolution of M’ as a left R-module. Then

FRX "R X, ,— — B® X, — M— 0
R R R

is exact in view of (1). Since R® X; is R-projective, it follows that
— _ B
(RRX;,1RXd;) is an R-projective resolution of M. In particular,

we have hdzM < hd,M' < gl. dim R. Since M is arbitrary, it follows
that gl. dim B < gl. dim B. This proves the lemma and hence the
theorem,

REMARK., Let S= K|z, +-+,2,] be the polynomial ring in » vari-
ables over a field K. It is well-known [7, Chap. III Cor. 4 to Th. 5]
that Krull dim Sy, is the same for all maximal ideals Mt of S. Let
d be a K-derivation of S given by d(x;) = f;. Then the derivation d
satisfies condition (2) of Theorem 2 if and only if f;,,1 <1 <n are
not coprime and in this case we may apply the theorem and we have
gl.dim R =% + 1. This includes the special case of Theorem 1 of
[6] in which K is a field.
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