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Let ¢(n) denote the Euler function, The starting point
of this paper is the simple observation that if p is a prime
then p and ¢(p) + 1 = p have a common divisor which is greater
than 1; its conclusion is: if {m:} is the sequence of positive
square free integers which have k prime factors, where &k = 2,
then the number of integers m; not exceeding x such that m,
and ¢(m;) + 1 have a common divisor other than 1 is asymp-
totic to

2~ (log log @)t?,
log

where 1, is a positive constant that depends on k.

The source of the problem under consideration was a
question raised by Gordon in the course of his investigations
of Hajos factorization of abelian groups. The question was:
are there integers n, other than primes and their doubles, such
that ¢(n) + 1 divides n, This is still an open problem.
However, if we relax our demands, as we have done above,
it is possible to prove the asymptotic relation stated there,

One of the main results needed to establish the first assertion of
this paper is:

LEMMA 1. Let a be a positive integer and b, -+-, b, be a set of
integers such that 0 < b, <a and (b,,a)=1 for 1 =1,2,---, k. Let
bl, -+, b, denote the distinct integers which appear in the sequence
b, -+, b, and suppose that b; appears r; times for j=1,2,--+,q.
Let n(x; a,b, ---,b,) denote the number of square free integers n
not exceeding x such that m = pp, -+ p, where p;, is a prime and
p;=0b;, mod o for 1 =1,2,---, k. Then for k = 2 we have

1 k logt™ [ log, « ]
y @y bl, Tty b = 1 EPOE
7(; 0 t) rdecert ofa) log x * ﬂ( log, a:)

uniformly for o =<log,., ©, where log; x is the jth iterated log-
arithm of x. The constant implied by the 7-term depends on k.

The proof of Lemma 1 is based on a generalization of one of
Wright’s ideas [2]. We begin this proof by listing several known
results about primes in arithmetic progressions,

9%
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LeMmA 2, Let n{x; a, b) denocte the number of primes not exceeding
x which are congruent to b medulo a, where 0 < b < a and (a,b) = 1.,
Then 1f

a = exp [¢, log z/log, @},

where ¢, is an absolute constant, we have

, 1 x [ ) 1 ]
(; a, b) = 1+ ¢
m(w; 0, b) pla) log x g ﬁ< log # )

except, possibly, for a set of integers {&'} all of which are multiples
of a single integer & which, in turn, is greater than log* x, where
A 1is any fixed positive constant. The constant vmplied by the &7 -term
depends on A.

See Chapter 9, Theorem 2.3 of [1] for a proof.
Frequent use will be made of the following form of this lemma:
if log © = u and a = log, © then

(u; a,b) = @?@) log % [1 + ﬁ<108% u>]’

where the constant implied by the ~7-term is independent of v and =.
We shall also employ:

LEMMA 3. If a < x then there is an absolute constant c, such
that

Co X

w(z; a,b) = - . .
pla) log (z/a)

See [1], Chapter 2, Theorem 4.1 for a proof.
The next lemma is a straightforward consequence of Lemmas 2
and 3.

LEMMA 4. If oz 27, 0<b<a and (a,b) =1 then

1 1 log, «
== log, x + (=22
= ) ( (a) )

uniformly for all integers a < 2 log, x.

The balance of this section deals with the proof of Lemma 1. As
for notation, a, b, ---, and b, will be the integers defined in Lemma
1, any prime p; which occurs will be congruent to b, modulo a for
1=1,2,+-+,k, and a prime on a summation symbol (as in 3) will
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indicate that any prime p; appearing in the index of summation is
congruent to b; modulo a. The symbols ¢,, ¢,, - -+ will denote constants
that depend, at most, on k. We also assume that k = 2,

LEMMA 5., Let
L(x; a1 bl! *t bk) = Z’

PyPg=e Py oot Py

where the primes p; run independently through the residue classes
b;, Then if © = ¢; we have

L(x; a, b15 ct Yy blc) =

log} @ [1+ ﬁ(logﬂ )]

P*(a) log,

uwniformly for a =< log, «

Proof. Since
f[(;_‘,' _1_>_S_L(x;a,b“..., )éI:I<_Z' 1>

i=1 pigxllk pz 0;
and since a is chosen so that
a = log; © = 2 log, %,

Lemma 5 follows from Lemma 4.

LEMMA 6. Let
Hasa, by, o0 by) = 2 logplmpk

Pyp-- k

where the primes p; run independently through the residue classes
b;,. Then if € > ¢, and a = log,., x we have

Hx; a, by, ooe, b)) = k( m x logi™! [1 + ﬁ(}ggz )] .

The proof is an inductive one. For %k = 2 we have

HNz; @, by, by) = Z,’ SY logp, + 3V SV log v,

Pysz pysz/py Py PySw/pg

Now, the first double sum on the right hand side of this equation
can be expressed as the sum of three double sums, 33, 3%, > whose
indices of summation are
n=afllgep Sloga, p=w/lgz logz <p < 2/p,
zfllogae <p, < p, < x/p,,

respectively. Let us consider 3, first. We have, by Lemma 2
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" log p,
log a2<py=a/py
=_1 [i—logwr ﬁ(—”— 1 )]
pla) L p, ». log, @

Moreover, since 2 log.{xz/log %) = log; © = ¢, Lemma 4 can be applied,
Doing so we find that

Z‘r ZI 10g P, = ——;L——logz xl:l + f(.l_()g‘—?’/v_)] .

pysefiog @ log a<pysa/py @ (a) 10g2 X

A straightforward application of Lemma 3 will lead us to tolerable
bounds for >}, and >}. If we do this and then apply the same
argument to the second double sum that appears in the equation for
Ha; a, by, b,) we will have our result for £ = 2,
Let us go on to the induction. Set

f{{!ﬁ/p» = Zy(x/pl; a, bls s bi—ly bH—ls "ty bic%—l) fOI‘ i é ?: é k + 1’

g(m/pm> = L<x/::0’z; a’ bls Tty b'i~—1) bi+ly M) bk) fOI‘ 1 é /I: g ]C

9(@Pr) = LA2[Prss; @y bsy + v+, by)
and

he/p) = flx/p) — (klpla)(@/pig(c/p:) for 1=i=k+1L

Then, since

k1
kd(@; a, by, « o -, bi) = 30 20 Fl@/ps)

t=1 p;=®

and since for 1 < ¢ < k,

Li{z;a,b, -, b) = pf;.; /o9l ,

it follows that

T0(@; 0, by e bss) — — oL by e, B
a
- k ﬂ?L(a, b27 Ty blc+l)
p(a)

k41 ,
= 3 S hia/p) -

Now, if p; < a/log « then 2/p;, = log # and log, .(x/p;) = log,.. & = «.

Thus, by the inductive hypothesis and Lemma 5, we have

>0 hix/p) = ﬁ[ i (log, «) logk™ x:l .

p;Zu/log @ m)—

If, on the other hand, we have x/log © < p; =< then z/p; =< log =,

and we can show, by referring to the definitions of the quantities
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involved, that

S flw/p) = ﬁ’[——k 2 (log, ) log}™ x]
z/log x<p; <% P (a)
and
r k@ g(x/p;) = ﬁ[-——————x (log; «) log}™ x]
zlloge<rise (@) P; P a)

In short, we have
2

kﬁ(x} a, bly ) bk+1) = k ) xL(x’ a, bl: ) blc)

@ a
+ 22 L@y a, by e, i)
p(a)
k _
+ ﬁ[m log; « logk x] .

Lemma 6 follows from this formula and Lemma 5.

LemMMmA 7. Let d(n;a,b, ---,b,) be the number of representations
of the integer m of the form n = p,--- p, where p;, =b;, mod a for
1=1, -+, k and the primes p; run independently through the residue
classes b;. Then we have

k logtx [ log, x ]
d . b LIy b pung 1 ————
2 d(n; 0,6, 00, b ) A 4 ﬁ’(logzx)

untformly for a < log,., .
Proof. Set d,(n) = d(n;a, b, ++-,b,). Then we have
K @y by o0, b)) = 3 di(n) log = (3. di(n)) log «
- [z dumdaog w .

Since d,(n) =< k! and since d,(n) is positive only if % =b, --- b, mod
a it follows that

%Mmgwj%+g.

Thus

S (S dum)d(log w) = 57 < 9% (log, )(logh~ ) .
2 nsu @(a) @k(a)

These results, along with Lemma 6, give us Lemma 7,
We are now in a position to prove Lemma 1, Set

6(%; a, bly ) bk) = #2(n)d(n; a, bl; M) bk) ’
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where p(n) is the Mobius function, Then

Oézd(n;ayblr "'1bk)_26(n;aybly ”'1bk)

nEzw n=w
L E—2
< . eee b, e < _Cw  logi~w
p=3 12=1 %d(%, a” bly ’ bz—-ly bz+1y y bk) — @k_l(a) ]Og x .
Consequently
Z e(n; a, b;, cen, bk) — k.’)ﬁ 10g§~1 X [1 + ﬁ( 10g3 90)] .
nss P%a) log x log,
This completes the proof of Lemma 1 since
(@3 0, by ooy b)) = —————— Se(n; 0, by, -+, by)

L IR U G

2. In this section we shall prove the assertion made in the
introduction of this paper. To that end, let @'(k, x) denote the number
of integers in the set

{m:1<mz=x,ms=p, -, fm)=1,(m pm +1) > 1},

and let @(k, x) be the number of odd integers counted by @'(k, x).
Let n; be a generic symbol for an odd positive square free integer
which has j prime factors, for j =1, ---, k.

Our first goal is formula (3) below. Suppose we have n = n, =
Do Dy, A (0, @) + 1), and d > 1; then d is a square free integer
which has j prime factors where 1 =7 =k — 1. Thus if we set

Ay = {m_y:mm_; = %, (0, mey) = 1, p(nymy_;) + 1 = 0 mod 7}

an elementary combinatorial argument will yield the equation

k

Ok, o) =S (1" S, 5, 1.

;S ny_ ;€Alng)

[

Consider next the quantity

(1) > S 1.

logp 41 x<nj§x nk__jeA(nj)

Since we have n; = p, --- p; at least one of the prime factors of =u;,
say p;, must be greater than (log,,. )/ = 2(j,«). Moreover, if n;
and n,_; are relatively prime integers such that

enm_;) + 1 =0 mod #;
we then have nm,_; = pn,_, and

() +1 =0 mod p, .
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Consequently the quantity (1) is bounded above by

k
(2 ) <j>p1>zzu‘!,x) nk_%‘ii(pl)l !

for any integer m;n,_; which appears in (1) will appear at most ({;)

times in (1) and at least once in the double sum of (2). If we set
2= 2k, ) = (log,+, )" we have

(3) m =S-S5 1+2),

n;S108 1 8 np—;€A(n;)
where
S=% 3 1.

p1>2 np 1 €4(ng)

We shall now show that if £ = 2 then

k~—1

(4) 2 (=1 3 2 1

=1 njslogp 4y % ngp—;€4(ng)

logk—2 [ 1 ]
= L =22 | 1 -
e log z + ﬁ<log,c+1 ”c> ’

where a, is a constant that depends on k.

Consider any fixed n; which appears in (4). If n,_;e A(n;) then
(My—j, 75) = 1 and p(n;)p(n,_;) + 1 = 0 mod n;. Thus, if (n;, p(n;) > 1
the set A(n;) is empty. On the other hand if (p(n;),n;) =1, and
Ny_j = Pj41 *** D, We have the congruence

(5) Djs1— 1) =+ (pp — 1) = Un;) mod n;

where I(n;) is chosen so that I(n;)p(n;) = — 1 mod n;. Furthermore,
if p;jyy -+« p, is a set of primes that satisfies (5) then there is a set
of integers l;,,, ---, [, such that

.

(6) lj+1 el = l(nj) mod n;
(7) @A+U,n)=1 for i=5+1,---,k,

for we need only take I; so that p; =1+ [; mod n;. Conversely, if
lits, +++, and [, are integers which satisfy (6) and (7) then there are
primes p;., +++, p, which satisfy (5). Note also that the number of
distinct solutions of (6), where two solutions, ;,,, +++, l;, and lj., ++«, I},
are said to be the same if and only if both contain the same integers
modulo ¢ to the same multiplicity, obviously does not exceed ¢*~/~'(a);
thus the number of solutions of (6) which also satisfy (7) is bounded
above by @" 7 (a).

Now, suppose that (n;, p(n;)) =1, let l;4,, ---,1, be a set of
integers that satisfies (6) and (7),and let b, =1+, fori =75+ 1, .-+, k.
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Then we have

X
— Ny, bj+1y Y bk)

Mmy) = ;1= 7z:<
ng—;€A(nj) {bj4q.eenbgl n;

where {b;:;, +++, b,} runs over the sets of integers we get when
{lit1y +++, li} runs over the distinct solutions of (6) which satisfy (7).
Lemma 1 will be applicable here if

log_jii(x/n;) = n; ,
but this is the case if n; < log,., « since
log_;4:(%/n;) = log,_;u(%/log,,: ®) = logi(x/log,,, «) = log,y, © = n;
for © = ¢, ¢; being a constant that depends on %. Consequently if

j=k—2 and n; < log,,; « then

8 ) — a(n;) « logi~i'uw 1 log, @ ]
(8) () P i(n;) n; log w [ + ﬁ(logzx)

where a(n;) is an integer such that a(n;) < kep*7~'(n;). Lemma 2
implies that (8) also holds if j =%k — 1,

If we take j = 1 we have, by (8)
(9) > > 1

nElogy 41 % np—1€4(ng)

- afn) = logi™ o [1 l_og_ﬁ)]
%1§1<>§8:|I1c+1x P* () n, log * ﬁ<10g2 w/1”

Set
a, =3, a(n,) .

o @FH(my)n,
Since a(n,) < kp"*(n,) this infinite series converges. Furthermore,
a, # 0. For, since n, is a prime, say %, = p,, a(p,) is the number of
solutions of the congruence I, --- I, = 1 mod p, such that (1 + [;,, »,) =1
for 1 =2, ..., k. Since the set of valuesl, =1, = ... =1, = 1 satisfies
these conditions we have a(n,) = a(p,) >0 for p, =3, i.e. a; %0,
In short, the left hand side of (9) is equal to

a,x logk—?x [1+ﬂ’< 1 )]
log « logy. /1’

where «, is a positive constant,
If 2=<j7=<Fk—1 then we have, by (8)

1— ﬁ[_@gé‘_‘*w_] )
log «

njSlogp 41 @ ng—;€A(ng)
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Formula (4) follows from this and preceding result.
The main problem that remains is that of finding a reasonable
bound for the quantity S where
S=> 3> 1
P1>2 np..1€4(pp)
and z = (log,., x)"*.
To that end, fix p, and define B(p,, 1) to be the set of integers
Py +++ Py in A(p) such that ¢ — 1 of the prime factors of p,--- 2,

are less than p, and k& — 4 are greater than p, for ¢ =1, --- k.
Then
k

(10) S=>2> X 1.

P1>2 1=1 0} 1€ B(p1,19)
If we fix p, and ¢, where 2 <17 =<k — 1, we have

1= = 1

7k —1€B(p1.4) Porepi Py PRE€C

where each of the prime factors of p,--- p; is less than p, and C,
which depends on p,, ---, and p;, is the set of integers p;., -+ D
such that p; > p, for 7 > 4, p, «++ PPy + -+ Dy, 18 square free and less
than or equal to z, and o(p, --+p,) + 1 = 0 mod p,. Similar statements
can be made when ¢ =1, If we fix p, ---, and p; our problem then
is that of finding primes p,.,, +--, and p, such that

@iss—1) oo (0 — 1) =1 mod p,

where ! is an integer, relatively prime to p,, that depends on p,, ---,
and p;,. Let D be the set of (& — 7)-tuples

{(Bigsy <oy by) 1 (biys — 1) -+ (by — 1) =1 mod p, 0 = bj =p}.
Then, holding »,, p,, -+, and p; fixed we have
1= 3 S 1.

P41+ PEE0 (Bj41r022bE)ED Py PRS2
p1<p =bj mod Py,5 >4

If we fix (b;yy, +++, b,) and let (bi,,, ---, b;) run over the (k — %)-tuples
we get by permuting the integers b,,,, ---, and b, we have

> 1= %, = 1
Py DpST (b;H—l""’b;c’ Pip1 0 €H
P1<p;j=b; mod py,i>4
where E is the set of integers
Wi oo DD Do D =2, D < Piga < o
< Pi, p; = b; mod py, § > i},

Now, fix (b;.y, ---, b1). If piyi -+ p, 18 in E it follows, by induction, that



104 R. J. MIECH

1
Dioer = (/D1 *++ Dipeps) 71 = (1)

since P, +++ Pyl = % a0d Py_(riyy = iy forr =0,1, -+ & — (2 + 1),
Consequently we have
(11) > 1§Z""Z""Z'ﬂ< x ;pl,b},>

P41 PLEE Pit1 Pl—r Pr—1 Diee* Vi

where the prime on the summation symbol indicates that », < p,_, < ¢(r)
and p;_, = b;_, mod p, for r =1, ---, &k — (¢ + 1).

Split the quantity on the right hand side of (11) into two sums,
>uand 3. The index of summation of >, will be those integers
Py -+ Py sSuch that pip, -+- p,_, < 2%, where 6 is a positive number
that will be chosen later; the index of summation of 3, will be those
Dy -+ Py such that pip, -« p > @,

We have, by Lemmas 3 and 4,

1
Z é ZV .o Z" ng
"SR A pD)Ps e Di—s 10g(R/DID; -+ Diy)

= Cs X ,ﬁl( Z 1 )
 @@)p; o+ p; log x oi=in 5ise D,

?; ~sb . mod Py
A 2
P p)p, ++ - p; log

where ¢, ¢, +-- are constants that depend on & and 4. If we sum
on (b;y, ++-, b,) we have

c 2 logk— ' ¢
Se= X SiE S
’ (b:i+1""»b;‘) ' @k_z(pi)px rec s IOg X

k—’L—l

A

log?

since there are at most (¢ — 7)! permutations of b;,,, +--, b;. Summing
on (b;yy, +++, by) yields
2=

< Cq w logk—i— ¢
(bj-l-l'g:"k’el)za T pP)p v ps log «

for there are at most @***(p,) (k& — 7)-tuples in the set D. Since
p; < p for g =2, ..+, 7 we have

So= 5 NSt (5 1) L e e

s P(P)p, P P log
¢, logi™t p, x logt— 'tz
P(p.)0: log «

Since we have the restriction ¢ £ &k — 1, we have

k—Z

logi~* p, « log}
= =e
ZG Z 25 = pl(P(p1) 10g x
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Finally, since p, > #, it follows that

x logk—? x

=c —
plz;‘z ZG = log €X '\/ 2
In short, we have
k—1 k-2
(12) IS S T RN AL
51>z =1 np_1EBlopy0) logz 1%

where the summation is restricted to those integers p, and n,_; =
g +++ 0, for which pip, « - Py < '8,

Let us return to (11) and deal with >, i.e. with those integers
Py v+ P Where pip, - p,_, > 2%, Under these circumstances we

have

T . b)) < 5. " < cx? < ppd
T E] pl, k] = 7T(Z')lx ’ pla bk) = ~ "8 = 6'300 .
Dy Dpa log @

Since we also have, for 0 < a < 1,

1—a
L =c y
7<psy  P* D,
P=b mod pg
we can prove, by induction, that
1
8+

Sesce 2 XY

Pit1 Phmr PITHDL o0 e Dp,) T

Thus if follows that
Co pd+B
2 (D pi)?

P

where 8= B(¢) =1 — (k — )", If we now sum on (b;,,, ---, b;) and
(bis1, by) We obtain a quantity that is bounded above by

e Pl (py o pi)P .

Omit the summation on ¢ for the moment, and divide the sum

2 3 2 (py ... p)f

Py Py

into two parts, the first, 3, being that part where p, < z°, the second,
S being that part where p, > 2%, ¢ being a positive number that

will be chosen later. We have, since p; < p, for 7 =2, ---, 7,
3+B 2
20 = L — é( > —]1—) 2P < et
s<iEat oy on; (Py oo ;)P \oiZee pf
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where N = i(1 — B)e + 6 + B. Furthermore since

TZ Py PiDigr v D = PEPy e s
it follows that

5+8
Ses 3, e
p1>2° Py pz"'pi§x/p{°_"+l (p2 M pa)
1
< 09( S L )aetioB < g gitee
171>:4:E p%

Set ¢ =1/(2k) and 6 = 1/(4k). Then 1+8 —e=1—(4k), A =1~
(4k%)~, and

1
Z? + Zns = e

A summation on the 4’s yields the inequality

(13) 55 0S 1=eww,
P>z i=1 ng_1€B(py,i)
where the summation is restricted to those integers p, and #,_, = p,- - - p;
for which p¥p, ««« p,_, > a2,
If we return to (10) we see that we must find a bound for that
part of S corresponding to ¢« =k. If we have n,_,=p,----p, in
B(p,, k) then, by definition, p; < p, for j =2, +--, k and

P:—1) -+ (P —1) —1=0 mod p,.
Once again we have a two way split. On one hand we have

1= 3, 7)™ = e,
2<p1=allk ny_1EB(py, k) pi=allk
for the obvious reasons. On the other hand, if p, > «Y* then
Ps e P < 2% and
1=

pi>allk ny_1EB(py,k) pyee-pp=al—llk pi>atlk
21 (@{pg=++pf)—1)

Since the number of prime divisors of o(p, -+ p,) — 1 which are
greater than 2'* does not exceed & this last double sum is bounded
above by kx''/*, Therefore, we can conclude that
(14) >0 1= et e,
P17 np—1€B(P1, k)
Let us assemble our results. Items (10), (12), (18), and (14) imply
that

N x logk—2 x
(15) S_ﬂ[logx vz ]
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Relations (3), (4) and (15) yield

Ok, ©) = l"%i}“_ [1 + ﬁ’(1—/~1_—z:>] ,

where z = (log;.; x)"*. Since @'(k, x) was defined to be the number
of positive square free integers m less than or equal to x which have
k prime factors and which have a factor in common with o(m) + 1,
and since @(k, x) was defined to be the number of odd integers counted
by @'(k, x) we have, for k > 2,
'k, x) = Ok, x) + Ok — 1, 2/2) ~ (o, logk—? x)/log .
If k=2 then
2, x) = 02, x) + w(x/2) ~ (a, + 1/2)x/log « .

These are the results we set out to prove.
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