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Various maximum and monotonicity properties of some
initial boundary value problems for classes of linear second
order hyperbolic partial differential operators in two independent
variables are established. For example, let M be such an
operator in Cartesian coordinates (x, y) and let T be a domain
bounded by a characteristic curve of M with everywhere
negative slope, and segments OA and OB of the positive α>axis
and the positive ̂ /-axis, respectively; under certain restrictions
on the coefficients of the operator M, if Mu ^ 0 in T, u = 0
on OA u OB and du/dy ̂  0 on OA then u(x, y) ^ 0 in T.

Such maximum and monotonicity properties also have appli-
cations to ordinary differential equations; the above mentioned
maximum property yields a comparison theorem on the distance
between zeros of solutions to some ordinary differential equa-
tions.

The first maximum principles for a class of linear second order
hyperbolic operators in two independent variables were formulated for
problems in which conditions are imposed on the solution along charac-
teristic curves [1; 3].

A maximum property of Cauchy's problem, in which the hypotheses
on the solutions are imposed along noncharacteristic curves rather than
characteristic curves, was first formulated by Weinberger [12] for a
class of hyperbolic operators of the form

(1.1) Hu = ±-(aψ)-JL(bψ-)+c^+dψ- α > 0 , δ > 0 .
ox \ dx / \ x oy

Namely, under certain restrictions on the coefficients of the operator
H, if du/dy g 0 on the initial line y — 0 and if Hu ^ 0 f or y > 0 then
u attains its maximum on y = 0.

A generalized maximum property of Cauchy's problem was es-
tablished by Protter [7] for essentially any smooth operator of the
form (1.1). That is, the maximum of u divided by an appropriate
function of the form eyx(l — βe~ay), over a sufficiently small strip
0 ^ y ^ y0, is attained on y = 0.

Recently, additional maximum properties and even some monotonicity
properties of Cauchy and characteristic initial value problems have
been obtained by Gloistehn [4] for some classes of linear and nonlinear
hyperbolic operators in two independent variables. For example, under
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certain restrictions on the coefficients of the operator H in (1.1), if

u ^ 0 and du/dy + Vά-du/dx ^ 0 on y == 0, and if Hu ^ 0 for y > 0

then u ^ 0 and du/3?/ + Va -dujdx + au ^ 0 for 2/^0; here a(x, y)

depends only on the coefficients of the operator H.
In the case of linear second order hyperbolic operators in more

than two independent variables, Weinstein [14, 15], Weinberger [13]
and the author [8; 9; 10] have established maximum properties of
Cauchy's problem. A typical result for the wave operator

(1.2) Wu = ?£-4u,

where Δ is the ^-dimensional Laplace operator, is the following [10;
13; 14]. Let N= ((n - 2)/2) (n even), # = ( ( % - 3)/2)(n odd). If dku/dtk = 0
(k = 0,1, , N) and dN+1ujdtN+1 ^ 0 on the initial plane t = 0, and if
(d*/dt"). (Ww) ^ 0 for ί ^ 0 then u ^ 0 for t ^ 0. Here the ^-derivatives
of t6 on the initial plane t — 0 are to be determined from the Cauchy
data.

In this paper, we derive various maximum and monotonicity
properties of some initial-boundary value problems for linear second
order hyperbolic equations in two independent variables. These initial-
boundary value problems, first considered by Hadamard [5; 6], may be
formulated in the following way.

Let L be a hyperbolic equation in characteristic coordinates (cf.
[2]) of the form1

(1.3) Lu — uζv + auζ + buy, + cu — F .

Let Cly Co and Cr be three curves with the following properties: (1)
d , Co and Cr may be represented as η — FΊ(ξ), V = /(?) and η — Fr(ξ),
respectively, where Fu f and Fr are continuously differentiate and
FΊ > 0, / ' < 0 and F'r > 0, (2) Co and d intersect at the point O(0, 0),
(3) Co and Cr intersect at 2?(f0, ηQ), where f0 > 0 and η0 < 0, and (4)
Cι and Cr do not intersect. Let Cf and Ct be the parts of Cx and
Co, respectively, where ξ ^ 0. Let C'r and CO be the parts of Cr and
Co, respectively, where η ^ fj^%

In the initial-boundary value problem Ilf we assume that the coef-
ficients of the operator L are defined in the region "between" Cf and
Ct and on the boundary Ct U Ct, u and uζ (Cauchy data) are prescribed
on Cf and u is prescribed on Ct.

In the initial-boundary value problem J r, the operator L is defined
in the region "between" C[ and C'r and on the boundary C[ (J C'r, u and
uv (Cauchy data) are prescribed on Co and u is prescribed on Cr

r.

In the initial-boundary value problem Πlr, the operator L is defined
1 A subscript ξ(η) denotes partial differentiation with respect to ξ(τj).
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in the region "between" Ct, C'r and the segment OD of the curve Co

and also on the boundary Ct U OD U C'r, u and either uξ or uη are
prescribed on OD and u is prescribed on CtUC'r.

In §2 and §3, under certain conditions on the coefficients of the
operator L, we establish some maximum properties of the initial-boundary
value problems Iu Ir and Πlr. In § 4, the results of § 2 and § 3 are
extended to an operator that is not expressed in terms of characteristic
coordinates; namely, we consider a hyperbolic operator of the form

(1.4) Mu = uyy - h\x, y)uxx + a(x, y)ux + β(x, y)uy + y(x, y)u, h > 0 .

In § 5, we obtain a sort of a monotonicity property, as well as another
maximum property, of an initial-boundary value problem for an operator
of the form (1.4); in §6, an application of this maximum property
yields a comparison theorem on the distance between zeros of solutions
to some ordinary differential equations.

2* Maximum properties of the initial-boundary value problems
Iι and Ir. We consider a hyperbolic operator L in characteristic co-
ordinates of the form

(2.1) Lu — uξv + auξ + buv + cu .

Let A(ξu 7)ύ and B(ξu 3?2) be points on C% and Cf, respectively.
Let OA and OB be the indicated segments of Ci and Cf; the points
O and A are assumed to belong to OA. Let TB denote the domain
bounded by OA, OB and the line £ = £ > ( ) and let TB denote the
closure of TB. We assume that the coefficients of L are continuous in
TB and b(ξ, rj) has continuous first derivatives in TB — OB. We consider
functions u that are twice continuously differentiate in TB — OB and
continuous, together with their first derivatives, in TB.

We consider problem It; that is, u and uξ are prescribed on Ct and
u is prescribed on Ct. In addition, suppose that

(2.2) uξ < 0 on OA - {0} .2

We have the following maximum property of problem It.

THEOREM 1. Let the coefficients of L satisfy the inequalities

(2.3) hv + ab-c^O

and

(2.4) c ^ 0 ,

2 The set {0} contains only the point 0.
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in TB, and

(2.5) 6 ^ 0 on OA .

Let u satisfy the inequality (2.2) and

(2.6) Lu^O in TB .

Then if the maximum of u in TB is nonnegative it can only be attained
on OAuOB.

Proof. Let the maximum of u in TB occur at the point Q and
suppose that Q does not lie on OAuOB. Then

(2.7) uζ(Q) S 0 .

Let P denote the unique point of intersection of OA and the charac-
teristic Γ(ξ = constant) through Q.

The following fundamental identity is also used in the discussion
of maximum principles for mixed elliptic-hyperbolic operators [1, p. 456]:

(2.8) vLu = {vuξ\ + (bvu)v + [cv — (bv)v]u ,

where v is a positive solution of the equation

(2.9) vη = av .

We integrate (2.8) along Γ from P to Q and obtain

S Q CQ

vLudη — bvu \% + I vu(bη + ab — c)dη
P JP

S Q CQ

vLudη + (bv) \P [u(P) — u(Q)] — u(Q) \ cvdη
P JP

CQ

v[u — u(Q)](bη + ab — c)dη .

[
JP

Since u(Q) ^ 0 and u ^ w(Q) in Γβ, the equation (2.10) and (2.2) through
(2.7) imply a contradiction. This completes the proof of Theorem 1.

The conditions (2.3), (2.4) and (2.5) are "best possible" in the sense
that one can give examples where the maximum property in Theorem
1 does not hold when these conditions fail to be satisfied (see Examples
1, 3 and 2, respectively, in § 4).

COROLLARY 1. Ifc~0 then the result of Theorem 1 holds with-
out the requirement that the maximum of u be nonnegative.

COROLLARY 2. I/, in Corollary 1, we have u g 0 on OA u OB
then u ^ 0 in TB holds without the requirement that the inequality
(2.2) is strict.
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The proof of Corollary 2 consists of applying Corollary 1 to
functions of the form ω = u — εeMζ+Ύ)), with λ chosen so large that
Lω S 0, and then letting ε —> 0.

If we impose further restrictions on the data along OA and OB
we can eliminate the restrictions (2.4) and (2.5) on the operator L.

THEOREM 2. Let the coefficients of L satisfy the inequality
(2.3) bv + aJb-c^O in TB.

Let u satisfy the conditions

(2.11) u = 0 and uζ ^ 0 , ow

(2.12) u^O on OB

and the differential inequality

(2.13) Lu^O in TB .

(2.14) ^ 0 in TB.

Moreover, if the strict inequality in (2.11) holds on OA — {0} then
u < 0 in TB U AB.

Proof. We define the functions

Z6δ = e~^+v)u , 5 > 0 .

Each function u5 satisfies a differential inequality

(2.15) LV - nil + asul + bVv + c V ^ 0 in TB ,

where the coefficients of the hyperbolic operator Lδ are given by

(2.16) aδ = a + d ,

(2.17) &δ = b + 3 ,

(2.18) cδ = c + δ(a + b) + d\

We note that for 3 sufficiently large we have b5 ^ 0 on OA and
cδ ^ 0 in Γβ. Since the expression bη + ab — c is one of the two
Laplace Invariants3 under transformations of the dependent variable u
of the form u = gU, where g is any positive function (cf. [1, p. 460]),
we have

(2.19) δδ + aΨ - cδ = bη + ab - c .

3 The other invariant is aξ + άb — c.
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Suppose that the strict inequality in (2.11) holds on OA — {0}.
Since

(2.20) v* = e-m+ΎI)uξ on OA ,

Theorem 1 implies that u5 < 0 in TB (J AB. Therefore u < 0 in TB (J AB.
This establishes the part of Theorem 2 when uζ is negative on OA — {0}.

In order to complete the proof of Theorem 2, we introduce the
class of functions

ω — u — eφeλ{ζ+η) ,

where φ is given by

Φ(ξ9 η) = η — /(£) (ί, 7j) in Γβ

and 7] = /(f) is the equation of the curve Co. We note that

\Δ*ώL) Wξ \ 0 Λ = % f | 0 4 -j- o/ β 0 4 ,

<2.22) Lω = Lu- εeλ({+"[λ(l - /') - af + b + Φ(X' + λ(α + 6) + c)] .

Since / ' < 0 on OA and φ Ξ> 0, we may choose λ independently of ε
and so large that Lω ^ Lu in ΓΛ. It follows from (2.11) through (2.13)
that ω satisfies the conditions of the first part of this proof and hence

(2.23) u < εφeλiξ+7}) in TB (j AB .

Finally, if we let ε-->0 in (2.23), we obtain the desired result (2.14).
We remark that the condition (2.3) in Theorem 2 is "best possible"

(see Example 1 in §4). In addition we wish to emphasize that the
condition (2.3) is invariant under a wide class of transformations of the
dependent variable u of the form u = gΐl and also under transformations
of the independent variables ξ and η which leave the form of the
operator L unchanged [1, p. 461].

Let C(f 2, 0) be a point on C>. Take A to be the point D and let
DC be the indicated segment of C'r. Let To denote the domain bounded
by OD, DC and the line η — 0 and let To denote the closure of To.
If we interchange ξ and η, together with a and &, in the above dis-
cussion we can establish, for example, the following maximum property
of problem Ir (see Theorem 2).

THEOREM 3. Let the coefficients of L satisfy the inequality

(2.24) aξ + ah - c ^ 0 in To .

Let u satisfy the conditions

(2.25) u = 0 and uv ^ 0 , on OD ,
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(2.26) u ^ 0 on DC

and the differential inequality

(2.27) Lu^O in Tσ .

Then

(2.28) u S 0 in To .

Moreover, if the strict inequality in (2.25) holds on OD — {D} then
u < 0 in TO{JOC.

The condition (2.24) is also "best possible" (see Example 1 in §4).

3* A maximum property of the initial-boundary value
problem IIir. Let B(ξ0, y}2) be the point of intersection of Cf and the
line ξ = fo and let TB and To be defined as in § 2. Let u satisfy the
conditions

(3.1) u — 0 and either uξ < 0 or %, < 0 , on OD ,

(3.2) u^O on OBUDC

and the differential inequality

(3.3) Lu^O in TB\JTO.

Since / ' < 0 on OD, u = 0 and we < 0 ( ^ < 0), on Oi), imply
^ < 0(uς < 0) on OD. Hence, if the coefficients of L satisfy the
inequalities (2.3) and (2.24) then Theorem 2 and Theorem 3 imply

(3.4) u<0 in TBl)Tΰ{jDB\jOC.

In this section, we determine a domain Σ such that (1) TB{J T0[j
DBuOC aΣ and (2) under certain "invariant" conditions4 on the
coefficients of L, if (3.1) through (3.3) are satisfied then u < 0 in Σ.

Let P(ξl9 3ft) be any point such that f0 < ξx < f2 and 0 < τjt < η2.
Let Q(ζl9 η0) denote the unique point of intersection of DC and ξ = ξt

and let 12(f0, ^0) denote the unique point of intersection of OD and
7] — Ύ]Q. Hence, to each point P(ξu η^) we may associate a unique point
£P(fo, Vi) and a characteristic rectangle with corners P, ζ>, JB and SP

such that Q and R lie on DC and OD, respectively; let T denote the
set of all points P(ξl9 η^} such that SP is contained in TB.

δ The set T
is a domain.

4 The conditions are stated in terms of Laplace Invariants (see footnote 3).
5 In the definition of the set T we may also use OB instead of DC so that SP

lies on OB and T consists of all points P such that Q is contained in To.
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Let P(ζu rjt) be any point in T and let Q, R and SP have coordinates
as in the definition of the domain T. We integrate (2.8) along the
characteristic from Px(f, ηQ) to P2(f, ηt) and obtain8

(3.5) \vLvdη = (?m)f \P

P\ + (δv - ve)tt \l\ + I Vy(c - αδ — &,)<&? .

We integrate (3.5) with respect to £(£0 ^ £ ^ ίx) and obtain

(3.6) (vu)(P) = (m)(Q) + (tm)(SP) - (tm)CB) + [Qφv - vζ)udζ

— l (6ι; — t;f)^6df + I \v[Lu + ^(δ^ + ab — c)]dξdη ,

where the double integral denotes integration over ξ0 S ξ ^ ίi and
Ύ]Q ^ 7] S r]u Let /y° be the particular solution of (2.9) given by

(3.7) v" = exp IT b(τ, ηo)dτ + [ α(f, /o^/ol .

Then

(3.8) ( i ; 8 )- 1 ^ 0 - «?) = 0 on 57 = ^ ,

(3.9) « Γ W - v?) = b(ξ, Vd - b(ξ, Vo) - \\(ξ, P)dp

>*(£. i°) - αe(ί- P)¥P o n 5? = 37i .

It follows from (3.1) and (3.6) through (3.9) that

(3.10) (v*u)(P) - (v*u)(Q) + (v'u)(SP) + Γ T ( % e - bη)dp\(v»u)(ζ, Vl)dξ

+ [ [v°[Lu + u(bv + ab - c)]d£<fy .

Let Σ = T\jTB[jTo[jDB[jOC. Suppose that there is a point P
in Σ such that tt(P) = 0. The inequality (3.4) implies that (1) P is in
T and (2) we may assume without loss of generality that u(P) = 0 and
u ^ 0 in the characteristic rectangle with corners P, Q, R and SP.
Let ^ and 2^ denote the parts of Σ where η > 0 and £ > | 0 , respectively.
Under the assumptions (2.24) and

(3.11) bη + ab - c ^ 0 in 2 ,

(3.12) αe ^ 6, in ΣB ,

it follows from (3.2), (3.3) and (3.10) that (v°u)(SP) ^ 0. Since SP is

6 In this section, u and the coefficients of L are assumed to be sufficiently smooth
in T (see §2).



MAXIMUM AND MONOTONICITY PROPERTIES 149

in TBy this is a contradiction. Hence u < 0 in Σ.
If we interchange ξ and η, together with a and 6, in the above

discussion, the conditions (compare (3.11) and (3.12))

(3.13) aξ + ab - c ^ 0 in Σ ,

(3.14) bv ^ αf in ^ ,

also imply that u < 0 in J?. We have established the following maximum
property of problem Πlr.

THEOREM 4. Let the coefficients of L satisfy the inequalities

aξ + ab-c^O in Σ ,

bη + ab - c ^ 0 in Σ

and either

(3.16) aξ + ab - c ^ bv + ab - c in ΣB

or

(3.17) bη + ab — c Ξ> aξ + ab — c in Σo .

Let u satisfy the conditions7

(3.18) u — 0 and either uξ < 0 or ^ < 0 , cm OZ>,

(3.19) ^ 0 on OB\JDC

and the differential inequality

(3.20) Lu ^ 0 m -Γ .

Then

(3.21) w < 0 in Σ .

We remark that the domain i? is the "largest possible" in the
sense that if we relax the strict inequalities in (3.18)—and hence also
the strict inequality in (3.21)—then one can give examples where the
maximum property u ^ 0 holds only in the closure of Σ (see Example
4 in §4).

4* Maximum properties of the initial-boundary value problems
I[ and IΓlr. In this section we extend the results of §2 and §3 to
a hyperbolic operator of the form

7 We may replace the condition "either Uζ < 0 or uη < 0 on OD" by a condition
involving the normal derivative of u on OD (cf. (4.15) in §4).
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(4.1) Mu = uyy - h\x, y)uxx + a(x, y)ux + β(x, y)uy + y(x, y)u, h > 0 .

For the sake of simplicity we consider only initial-boundary value
problems for M where u and uy are prescribed on a portion of the x-
axis and u is prescribed on either the line x = 0 (problem I/) or the
lines x = 0 and a? = d0 > 0 (problem II{r).

We recall that the characteristic curves of M are the solutions of
the ordinary differential equations

(4.2) ψ- = h ,

(4.3) — = -A

Let A'(d, 0) and D'(d0, 0) be points on the positive #-axis. Let B'(0, yt)
[respectively C'(dQ, y2)] be the unique point of intersection of the line
x = 0[x = d0] and the characteristic curve ΓJ[Γ+] with slope (4.3) [(4.2)]
that passes through A'(d, 0) [O(0, 0)]. Let OA', OΌ\ OB' and D'C be
the indicated straight line segments. Let TB, and To, be the domains
bounded by OB', OA', Γ_ and D'C, OΏ\ Γ+, respectively.8

We consider functions u that are twice continuously diίEerentiable
in TB, — 0 5 ' and continuous, together with their first derivatives, in
TBr. We assume that the coefficients of M are continuous in TB,, a
and β are continuously diίf erentiable in TB, — OB' and h has continuous
second derivatives in TB, — OB'. (We assume that analogous conditions
hold when we consider the domain To,).

We define the operators

(4.4) ί = 3 + Λ 3 ^
oy ox

(4.5) D=-f--h^L.
dy dx

The operators d and D are essentially the directional derivatives along
the characteristic curves defined by (4.2) and (4.3), respectively.

In this section we assume also that h is continuously differentiable
and positive in TB> (and Ta>). If we introduce characteristic coordinates
ξ = ς(χf y) and η = η(x, y) as new independent variables (cf. [2]) then
we can apply the results of §2 to the transformed operator—an
operator that is of the form (2.1). In terms of the operators δ and D
the conditions (2.3), (2.5) and (2.24) become

8 The points Ar and O do not belong to either Γ- or Γ+.
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(4.6) &g = D(D{K) ~ a + $h)
V h 1

- —(D(h) - a + βh)(D(h) — a — βh) — 2y ^ 0 in 2V ,

(4.7) D(A) - α + βh ^ 0 on

and (compare [1, p. 464, (5")])

(4.8) 2Frz
h

a + ̂ ) ( W + « - W - 2Ύ ̂  0 in

respectively. We have, for example, the following result.9

THEOREM Γ. Let the coefficients of M satisfy the inequalities
(4.6), (4.7) and

(4.9) 7 ^ 0 in TB, .

Let u satisfy the condition

(4.10) δ(u) < 0 on OA' - {0}

and the differential inequality

(4.11) Mu S 0 m 2V .

i/ ίfeβ maximum of u in TB, is nonnegative it can only be
attained on OA'uOB'.

The following examples illustrate which conditions in the above
theorems are "best possible".

EXAMPLE 1. We consider an operator M of the form Mu = uyy —
uxx + 3u. Let OA! and OBf be the segments of the #~axis and the 2/~axis
where 0 ^ x S 3ττ/4 and 0 ^ y ^ 3π/4, respectively. The domain 2V is
given by x + y < 3π/4, x > 0 and /̂ > 0. Since /̂  = 1, 7 = 3 and a = /9 = 0,
the conditions (4.7) and (4.9) are satisfied. However, the condition (4.6)
becomes 7 ^ 0 which is not satisfied. Let u(x, y) = —sin 2y cos (x — π/2).
Then Λfw = 0 in TB, and δ(u) = —2 cos (a? — ττ/2) < 0 when y = 0 and
0 < x ^ 3ττ/4. Since u(r, (π + r)/2) = sin2 r > 0 (0 < r g π/6) and w = 0
on OA' (J OB', the function u does not attain its maximum on OA! U OB!.
Therefore, the condition (4.6) in Theorem 1' is "best possible". More-
over, if we set ξ ~ y + x and η — y — x, this example shows that the

9 The desired extension of Theorem 2 is contained in Theorem 5.
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condition (2.3) in Theorem 1 and Theorem 2 is also "best possible".

EXAMPLE 2. Let Mu = uyy — uxx — 2uy. Let OAr and OBf be the

segments of the cc-axis and the ^/-axis where 0 ^ x ^ τr/3 and 0 ^ 7/ ̂  τr/3,
respectively. Then domain TB> is given by a; + y < ττ/3, # > 0 and
y > 0. Since Λ = 1, £ = —2 and a = 7 = 0, the conditions (4.6) and
(4.9) are satisfied but the condition (4.7) becomes β ^ 0 which is not
satisfied. Let u(x, y) = (y — l)ev cos (α? — ττ/2). Then M^ = 0 in 2V,
w ^ 0 on OA' U 0 5 ' and δ(u) = sin (a? — π/2) < 0 when y = 0 and
0 ^ a? £ ττ/3. Since i φ , 1 + r) = re 1 + r sin r > 0 (0 < r < l/2(ττ/3 - 1)),
the condition (4.7) in Theorem Γ is also "best possible".

EXAMPLE 3. Let Mu = uyy — uxx — η\u, where τ 0 is a positive
constant. Let ft be the first positive zero of JK/o), the Bessel function
of order 1. Let OA! and OBf be the segments of the #-axis and the
2/-axis where 0 ^ x ^ d and 0 ^ 2 / ^ ^ ( 0 < ώ < ft/70), respectively. We
note that condition (4.9) is not satisfied. Let u(x, y) —

where Jo(/°) denotes the Bessel function of order 0. It is well known
that u has the properties (1) Mu = 0 , (2) u — 1 on y = x (and 2/ = — #)
and (3) | u(x, y)\^l (cf. [2, p. 120] and [11]). Moreover, δ(u) =
ΎOJΌ(ΎO%) = — ΎoJi(Ύ<β) < 0 when ?/ = 0 and 0 < α? ̂  d. Since ^ attains
its maximum on y — x, the condition (4.9) is also "best possible".

In order to extend Theorem 4 to the operator M we first determine
a domain T' that plays the role of the domain T in § 3. In the defi-
nition of the point J3', we take A' to be the point D'(d0, 0). Let ΓB, and
Γo, be the characteristic curves given by (4.2) and (4.3), respectively,
that pass through Br and C . Let E be the characteristic quadrilateral
bounded by ΓB,, Γo,, Γ+ and Γ_. As in § 3, to each point P'(x, y) in
E, we may associate a unique point £ P , and a characteristic quadrilateral
with corners P', Q', i2' and SP, such that Q' and R' lie on JO'C and
OD\ respectively. Let Tr denote the domain that consists of all points
P ' such that SP, is contained in TB,% Moreover, as in §3, let Σf —
Γ ' y ϊ t

Λ ' U Γ ( ; , U Γ . U Γ + and let ΣB, and Σo, be the parts of 2" "above
Γ + " and "above ΓJ\ respectively.

We can now formulate the desired extension of Theorem 4. Since
the Laplace Invariants bη + ab — c and aξ + ab — c are given essentially
by (4.6) and (4.8), respectively, we need only restate the conditions
(3.15) through (3.17) in terms of the operators 3 and D.

THEOREM 4'. Let the coefficients of M satisfy the inequalities

(4.12) EiO in r
F^0 in Σ'
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and either

(4.13) F^E in ΣB,

or

(4.14) E ^ F in Σo, .

Let u satisfy the conditions

(4.15) u = 0 and uy ^ 0 , on OD' ,

(4.16) uSO on OB'VD'C

and the differential inequality

(4.17) Mu ^ 0 in 2" .

Then

(4.18) w ^ 0 in Σ' .

Moreover, if the strict inequality holds in (4.15) then the strict ine-
quality holds also in (4.18).

Proof. If the strict inequality holds in (4.15), Theorem 4 implies
the desired result u < 0 in 2".

In order to complete the proof of Theorem 4', we consider the
functions

w — u — eyeλy ε > 0 ,

where λ is chosen independently of β and so large that Mw ^ Mu in
2\ Since (4.15) through (4.17) imply that w satisfies the conditions of
the first part of this proof, it follows that

(4.19) u < εyeλy in 2" .

Hence, letting ε—»0, we obtain (4.18).
The following example shows that the domain Σι in Theorem 4' is

the "largest possible".

EXAMPLE 4. Let Mu = uyy — uxx% Let OD' and OB' be the segments
of the #-axis and the /̂-axis where 0 ^ x ^ π and 0 ^ 7/ ̂  π, respectively,
and let D'C be the segment of the line x = π where 0 ^ /̂ ̂  π. Then
the domain 2" is given by 0 < x < π and 0 < y < TΓ. Let v,(x, y) — —
sin 2/ cos (x — π/2). Since w ^ 0 in the closure of Σ' but w > 0 when
0 < x < π and ^ — π + s (0 < ε < TΓ), the set 2" in Theorem 4' is the
"largest possible".
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5* A monotonicity property of the initial-boundary value
problem //• In this section (the notation and the various smoothness
assumptions are the same as in § 4) we consider the operator M with-
out introducing characteristic coordinates. In addition to an extension
of Theorem 2 this more direct approach also yields a sort of a
monotonicity property for M.

Our discussion is based upon the fundamental identity (see (2.8)
and [1, p. 465]; compare also [4, p. 385, (1.2)])

(5.1) D[vδ(u)] = vMu + [D(v) - βv]D(u) — yvu ,

where δ and D are the operators defined in (4.4) and (4.5) and v is a
positive solution of the equation

(5.2) 2hD(v) + v[D(h) - a - βh] = 0 .1O

We rewrite (5.1) as

(5.3) D[v(δ(u) + θu)] = vMu + uvE ,

where E is defined in (4.6) and

(5.4) θ = v-\βv - D(v)]

__ D(h) — a + βh
2h #

The following theorem is a consequence of (5.1) and (5.3).

THEOREM 5. Let the coefficients of M satisfy the inequality (4.6).
Let u satisfy the conditions

(5.5) u — 0 and uy ^ 0 , on OA! ,

(5.6) u S 0 on OR

and the^differential inequality

(5.7) Mu ̂  0 in TB, .

Then

(5.8) u^O

and

(5.9) δ(u) + θu ̂  0 ,

in TB,{jΓ_. Moreover, if the strict inequality in (5.5) holds on

10 On any characteristic curve given by dx/dy = — h, we see that D(v) = dυ/dy
and, hence, the equation (5.2) becomes an ordinary differential equation.
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OA! — {0} then the strict inequality holds also in (5.8).

Proof. Suppose that the strict inequality in (5.5) holds on OA' —
{0}. Since D = d/dy on any characteristic curve dx/dy = — h, if we
proceed as in the proof of Theorem 1 and Theorem 2—with the identity
(5.1) playing the role of (2.8) and u5 = e~5yu—we obtain u < 0 in
ΓB/U-Γ— The remainder of the proof is a variation of a method used
by Gloistehn [4] for the Cauchy problem. Assume that there is a
point Q' in TB,[JΓ^ such that [δ(u) + θu] \Q, = 0. Let Γq, be the
characteristic curve given by (4.3) that passes through Q' and let P
denote the point of intersection of ΓQ, and OA'. Since [δ(u) + θu] | P < 0
by our hypotheses there is a point Q on ΓQ, such that [δ(w) + θu] \Q = 0
and δ(t&) + ^ < 0 on the arc of ΓQ, between P and Q. Therefore,
since v > 0 and D is essentially differentiation along ΓQ,, it follows that

(5.10) D[v(δ(u) + θu)] \Q ̂  0 .

The basic equation (5.3), together with u(Q) < 0, Mu < 0, (4.6) and
(5.10), yields a contradiction. Thus δ(u) + ^^ is negative in TB, U/7-
under the additional assumptions ^ < 0 on OAr — {0} and M% < 0 in

In order to complete the proof of Theorem 5, we consider again
the functions

w — u — eyeλy e > 0 ,

where λ is chosen independently of e and so large that Mw < Mu in
Tβf. It follows from (5.5) through (5.7) and the first part of this
proof that

(5.11) u <

and

(5.12) δ(u) + θu< εeλy(l + Xy + θy) ,

in TB,\JΓ_. Therefore, letting ε->0, we obtain (5.8) and (5.9).

COROLLARY 3. Let Qx(xu y^ and Q2(x2,2/2) be two points in TB,
that are joined by a characteristic curve Γ of the family (4.2) and
suppose that yx ^ y2. If (4.6) and (5.5) through (5.7) are satisfied
then

(5.13) u(Q2) ̂  u(Qλ) exp [ ^ θdyj .

The proof consists of multiplying (5.9) by expΓ\ θdy\ and inte-

grating along Γ from Qλ to Q2.
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6* An application to ordinary differential equations* In this
section we establish a comparison theorem on the distance between zeros
of solutions to some ordinary differential equations. Comparison theorems
of this type have already been obtained by Weinberger [12] and Protter
[7] as applications of some maximum properties of "pure" initial value
problems. However, we show that in some cases a "stronger" result
can be obtained by the use of a maximum property of an initial-
boundary value problem.

We consider the ordinary differential equations11

(6.1) (fx(x)Φ'(x))' + g,(x)Φ(x) - 0 , fx(x) > 0 c ^ x ^ d ,

(6.2) (ft(y)Ψ'(v)Y + g*(v)Ψ(v) = 0 , Λ ( y ) > 0 a ^ y ^ b .

Suppose that φ(xx) = 0 and φ(x) > 0, c ^ x1 < x S x2 ^ d. In addition,
suppose that ψ{y^ = 0 and ψ\y^) < 0, a ^ y1<b. Let M be the
hyperbolic operator given by

(6.3) Mu = uyy - uxz - /ry/w. + ffViu, + (/r1^ - Λ-'gOu .

Then the function u(x, y) = φ(x)ψ(y) is such that

(6.4) u = 0 and %y < 0 , on y — yx and xx < α; ̂  a?2 ,

(6.5) u = 0 on x — xx and y±^ y S b ,

(6.6) ikΓ̂  = 0 , a^y ^ δ and c ^ ^ d ,

Hence, if the functions a = —/Γ1//, /S = /a"1// and 7 = Λ"1^ — f^Qi
are such that the operator M satisfies the condition (4.6), Theorem 5
implies that u < 0 in the domain bounded by the lines x = xL, y — yt

and x + y = xi + y1. Thus <f (#) < 0 when y1<y <yx + (x2 - xx).
Since ψ and ^ ' cannot vanish simultaneously and xu x2 and yt were
arbitrary, we have established the following comparison theorem (see
[12, p. 512] and [7, pp. 123-125]).

THEOREM 6. Let m be the greatest lower bound of the distance
between zeros of ψ on the interval a ^ y ^ b and let m* be the least
upper bound of the distances between zeros of φ on the interval
c^x^d. If

(6.7) 2/2-γ2" - (ffVO2 - 4/ΓV2 ^ 2/r1//' - (/Γ1//)2 - 4/rVi

for a ^ y ^ b and c ^ x ^ d, then

(6.8) m^m* .

11 In this section, v! denotes the derivative of the function v.
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COROLLARY 4. I/, in Theorem 6, we have fx(x) = 1, gx(x) = λ2 and

(6.9) 2fJi' - ( f i γ + 4 / 2 ( λ 2 / 2 - g2) ^ 0 a £ y £ b ,

then

(6.10) m ^ πλ-1 .

We remark that, even under the conditions X2f2(y) ^ g2(y) and
fi{y)f"{y) ^ (fl{y)f, the direct application of a maximum property for
a "pure" initial value problem would yield only the "weaker" result
m ^ 7Γλ"V2 [7, p. 124 Corollary 3].
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