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SOME CLASSES OF RING-LOGICS

ApiL, YAQUB

Let (R, X, +) be a commutative ring with identity, and
let K = {py, ps, -++} be a transformation group in R. The
K-logic of the ring (R, X, +) is the (operationally closed)
system (R, X, ps, P2, -+ +) whose operations are the ring product
“x? together with the unary operations p, p;, --- of K,
The ring (R, X, +) is essentially a ring-logic, mod K, if the
“47 of the ring is equationally definable in terms of its
K-logic (R, X, p1, p2, -++). Our present object, is to show that
any finite direct product of (not necessarilly finite) direct
powers of finite commutative local rings of distinct orders is
a ring-logic modulo certain suitably chosen (but nevertheless
still rather general) groups. This theorem subsumes and
generalizes Foster’s results for Boolean rings, p-rings, and
pk-rings, as well as the author’s results for residue class rings
and finite commutative rings with zero radical. Several new
classes of ring-logics (modulo certain groups of quite general
nature) are also explicitly exhibited. Throughout the entire
paper, all rings under consideration are assumed to be com-
mutative and with identity,

The one component case. In this section, we direct special
attention to arbitrary direct powers of a finite local ring in regard
to the concept of ring-logics. First, we recall the following [9; 228]

DEFINITION 1. A ring R is called a local ring if and only if R
is Noetherian and the nonunits of B form an ideal.

REMARK. It can be easily shown that for a finite commutative
ring R with identity 1(1 == 0), the concepts ‘‘local ring’’, ‘‘primary
ring”’, and ‘‘completely primary ring’’ are equivalent. This readily
follows by recalling that a primary ring is a ring R with identity
such that R/J is a simple ring satisfying the minimum condition for
right ideals, while a completely primary ring is a ring R with identity
such that R/J is a division ring. Here, J is the radical of B. Hence
the results below still hold if we replace the local rings involved by
primary rings or by completely primary rings.

A very useful result for our purposes is the following

LEMMA 2. Let R be a finite ring with identity 1(1 #= 0). The
ring R is a local ring if and only if every element of R is either
a unit or s nilpotent.
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Proof. Let R be a finite local ring with radical J, and let N
denote the set of nonunits of R. We claim that J = N. Clearly,
J < N. Now suppose z€ N. Since N is an ideal and 1¢ N, therefore,
1—z2¢ N. Hence, for any z in R, ze N implies that 1 — zx is a unit
and thus zz is quasi-regular. Therefore, N cJ. This proves the
“only if”’ part. The ¢‘if”’ part is immediate.

Now, let (R, x,-+) be a finite local ring and let G = {1, &,, ---, &,} be
the group of units in B. Let ~ be a eyclic 0 — 1 permutation of R, i.e.,
07=1, and xe R=a = 07* for some s, where a™* = (+--((@)")"+++)"
(s-iterations). From [4], we recall the characteristic function 0J.(x),
defined as follows: for any given e R, d(x) =1 if o = ¢ and d,(x) =0
if ® = p. Following [4], we also define: @ X _b = (a" X b")”, where ~
is the inverse of the 0 — 1 permutation ~.

In the remainder of this paper, juxtaposition will be used in place
of “x”. Now, it is readily verified that [4]

1.1 axX_0=0 x_a=a; and for any function f on R,
L2 fwy )= S A B )0uE) )

In (1.2), «,B, --- range independently over all the elements of R while
z, Y, «-- are indeterminates over R. Also, 3.5 z,; denotes o, X _a, X _
++, wWhere a,, a,, --- are all the elements of R.
The following lemma holds for any finite abstract algebra (R, X)
with zero. For convenience, however, we state the result for rings.

LeMMA 3. Let ~ bz any cyclic permutation of a finite ring R,
and let K be the transformation group in R generated by ~. Then
all the elements of R are equationally definable in terms of the K-
logic (R, x, 7).

Proof. Since ~ is a cyelic permutation of R, therefore,
R=1{0,07,0"%...,0""%,
where » is the number of elements in R. Similarly,
xr e ... x7" =0 for all x in R.

This shows that 0 (and with it 07,07% ..., 07"") is expressible in
terms of the K-logic. This proves the lemma.

LEMMA 4. Let R be a finite local ring, and let G = {1, &, ---, &}
be the group of units in R. Let ~ be a cyclic 0 — 1 permutation of
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R satisfying 17 = &, & = &, -+, &, = &,, but otherwise ~ is entirely
arbitrary. Let K be the transformation group in K generated by ~
Then each characteristic function d.(x), € R, 1s equationally definable
in terms of the K-logic (R, x,7).

Proof. Let pe R. Since ~ is cyclic, there therefore exists an
integer k& such that ™" = 0. Now, choose m so large that »" =0
for all nilpotent elements » of R. Using Lemma 2, together with
Lagrange’s Theorem, it is easily seen that

M(a’) {,1,/. E+1 Ak+"/U"k+3 o x"‘k-’rr}mr ,

and the lemma is proved.

THEOREM 5. Let R, K,” bz as in Lemma 4. Then the lecal ring
R is a ring-legic, mod K.

Proof. By (1.2), © + ¥ = S Ger(@ + B)(0,4x)04(y)). By Lemma 3
and Lemma 4, each of a + B, 0,(2), 0a(y), is equationally definable in
terms of the K-logic. Hence, the ‘4’7 of R is equationally definable
in terms of its K-logic, and the theorem is proved.

REMARK. Formerly, a minor side-line condition (namely, that the
ring be “‘fixed” by its logic) was also included in the definition of a
ring-logic [1]. We do not require this condition in our present defini-
tion.

THEOREM 6. Let R, ~ be as in Lewmma 4, and let R* = R™ be
a (not necessarily finite) direct power of K. Let ~ be the induced
permutation of R* defined by (%, %, ) = (&, x5, +++), and let K
be the transformation group in R* generated by ~. Then (R*, X, +)
is a ring-logic, mod K.

Proof. This follows readily from Theorem 5, since the operations
in R™ are component-wise.

Let us now consider, for example, the case in which B = GF(p*).
Clearly, the Galois field R is a local ring. But much more than this
is true. Indeed, the permutation =~ of Lemma 4 is now any cyclic
0 — 1 permutation of B. Hence, Theorem 6 now yields the following.

COROLLARY 7. Let R = GF(p"), arnd let R'™ be a (not necessarily
finite) direct power of GF(p*). Let ™ be any cyclic 0 — 1 permulation
of GF(p*), and let K be the transformation group in R* generated
by that permutation of R* induced by ~. Then (R* X, +) is a
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ring-logic, mod K.
It is noteworthy to observe that by choosing = in the above
corollary to satisfy #" =1 —%,2” =1+ 2, and

@ =&x + (14 &x + £2° + -+« + & %" (& = generator for GF(p")) ,

respectively, one essentially recovers Foster’s results [1; 2; 3] for
Boolean rings, p-rings, and p*-rings. For, as is easily seen, the above
choices for = do indeed yield certain cyclic 0— 1 permutations of
GF(2), GF(p), and GF(p*), respectively (compare with the introduction).

Another corollary to Theorems 5, 6, is obtained by adjoining any
finite number of commuting nilpotent elements to a given Galois field.
The resulting hypercomplex rings, in turn, give rise to new classes
of ring-logics. We state this formally in the following.

COROLLARY 8. Let F'= GF(p*), and let 5, ++-, 7, be a finite set
of wilpotent elements such that nx; = nm; for all 1,7, and an;, = N,
for all i and all @ in F. Let R= F[n, ---,n]. Then R is a finite
local ring. Furthermore, R is a ring-logic, mod K, where K is the
transformation group in R generated by the permutation of R
preseribed in Theorem 5. Moresver, any direct power of R is a ring-
logic (modulo the group prescribed in Theorem 6).

The proof of Corollary 8 is quite straightforward and will here
be omitted.

2. The general case. We shall now generalize Theorems 5 and
6 to the situation in which the component rings are not necessarily
all identical. To this end, we need the following concept of independence,
introduced by Foster [5].

DeriNniTION 9. Let {U,, ---, U,} be a finite set of algebras of the
same species S. We say that the algebras U, - .., U, are independent,
or satisfy the Chinese Residue Theorem, if, corresponding to each set
{4r;} of expressions of species S, there exists a single expression X
such that «, = X(U;) (¢ =1, ---,f). By an expression we mean some
composition of one or more indeterminate-symbols in terms of the
primitive operations of U, ---, U,; 4; = X(U;) means that this is an
identity of the algebra U,.

As usual, we use the same symbols to denote the operation symbols
of the algebras U, --., U, when these algebras are of the same
species.

LEMMA 10. Let R, ---, R,, be finite local rings, and let G, =
{1, &, =+ -, &,.i} be the group of units in R; (¢ =1, -.--,t). Let ™ be
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a cyclic 0 — 1 permutation of R; satisfying
1" = &siy 5;; =&y * 0% E;;—ln' = ériyi ’

but otherwise ~ is entirely arbitrary, and let K; be the transforma-
tion group in R; generated by ~ (1=1,-.-,t). Let the order
(= number of elements) of R; and order of R; be distinct (¢,5 =1,
cee,t;4 % 7). Then the K-logics (R;,, X,”) (#=1,+-+,t) are in-
dependent.

Proof. Let n be the largest of the orders of R, ---, R,, and let
E=¢7¢6... 671, Now, consider first the logies (R;, X, ) and
(R;, x,7) (@ +# Jj). We distinguish three cases depending on the orders
r;, r; of the groups of units of R;, R;.

Case 1. r;<r;,. Let N be chosen so large as to satisfy:
arir; = def = ¢, and %? = 0 for all nilpotent elements 7 in R; or in R;.
It is now readily verified that

= = 1 (R;

I.v'i (5) def = (Z’]A_E'ﬁ2 ces E’\”j)q _ {0 E J))
= — 0 (R;

l:; () = def = ({|;; (&)Hl;: (€} {1 E J;

Case 2. r; <r;,. By symmetry, this is essentially same as Case

Case 3. r;=1r;. Assume, without any loss of generality, that
m = def = order of R; < order of R;. Then, with ¢ as above, it is
easily seen that

= 1 (R;

li; (§) = (B "mHE "™ ..o FTmETiye {0 ER ;
= = 0 (R;

155 (6) = def = ({l:; ()Hl:; (O}7)" 5 {1 ER; )

Now, let [: (&) = [i (&) [ (§) +++ [t (6)(n0 |s; (§) term) (2 = 1, -+, 7) .

Let 4y, +++, 4, be a set of ¢t expressions of species (2, 1), i.e., primitive
compositions of indeterminate-symbols in terms of the operations x, ~.
Define

X:{"/’1 Ix(f)} X_wee Xn{"/’t It(é)}

It is readily verified that 4, = X(R,)) (¢ =1, ---, %), since a x_0=0
X _a =a. Hence the logics (R;, x, ") are independent, and the lemma
is proved.
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We are now in a position to prove the following Principal Theorem
the case ¢ = 1 of which yields Theorem 6.

THEOREM 11. (Principal Theorem). Let R, K;,” (i =1, .-, %) be
as in Lemma 10 and let R, -+, R, have distinct orders. Let R be
a direct product of (not mecessarily finite) direct powers of Ry, «++, R,
(t finite). For every element (%, =<+, Ty, +++, Ly, +++) 0 R, define
(xll’ coe, By, v, Ty, ...)" e (xﬁ’ RN m;, N x;‘l’ ...)’ and let K be the
transformation group in R generated by ~. Then R is a ring-logie,
mod K.

Proof. By Theorem 5, each ring (R;, X, +) is a ring-logic, mod
K;. Hence, for each 4, there exists an expression +, such that
2 + Y = e, ¥y X, 7), for all x;, y; in R;, Moreover, by Lemma 10
the K;-logics (R;, x, ) are independent (i =1, .--,¢). Hence, there
exists a single expression X such that X = ,(R,) (1 =1, ---, ). Since,
however, the operations are component-wise in the direct product R,
therefore,

X(x,y; X, )=2x+y, forall z,y in R.

Hence, the ‘““+’’ of R is equationally definable in terms of the K-logic
(R, x<,7), and the theorem is proved.

We conclude by applying Theorem 11 to certain familiar classes
of rings. To this end, we direct special attention to the cases where
(a) R; = GF(p%), p; prime, (¢ =1, ---,t), and (b) each R, is a residue
class ring (mod p¥), p; prime. In case (a), each of the transformation
groups K; of R,(= GF(p¥)) is now generated by any cyclic 0—1
permutation of R; (there are (p¥ — 2)! such permutations), and these,
in turn, induce a permutation of the direct product R-which permuta-
tion generates a transformation group K in R such that (R, x, +) is
a ring-logic, mod K. In case (b), the choices for K, are now some-
what more restricted than those in case (a), but otherwise the situation
is quite similar, Finally, recalling the familiar direct product structure
of (a) finite commutative rings with zero radical, and (b) residue class
rings, mod n (n arbitrary), we obtain, as a further corollary to Theorem
11, the following (compare with the introduction; also see [7; 8]).

COROLLARY 12, (a) Let R; be a finite ring with zero radical
(t=1, -+-, t;t finite), and let R be any direct product of (not neces-
sarily finite) direct powers of R,, ---, R,. Then there exists a trans-
formation group K in R such that (R, X, +) is a ring-logic, mod K
(where K is as prescribed in Theorems 5, 6); (b) same as (a) except that
each R; is now a residue class ring, mod n; (n; arbitrary).
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In conclusion, I wish to express my indebtedness and gratitude to
the referee for his valuable suggestions,
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