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Let πk(n, m) denote the number of partitions

n = Uι + n2 + + nk

m = mi + m2 + + mk

subject to the conditions

mm(nj, mi) ^ max(%+i, wij+i) (j = 1, 2, , k — 1) .

Put
oo

ζ \Xt y) —— y ι τc]t\ίiy τϊi)x y .
n,m=0

We show that

2 π(n> ™ > λ)%nVm = 1 + (1 - λ) Σ ^ ( & ) ^ ' ^ '
n,m=Q k—1

oo oo

2, ψ(n, m)xnym = 2 ^?/nf(w)(^2, ?/2) ,

where π(n, m; ̂ ) denotes the number of "weighted" partitions
of (n, m) and ψ(nf m) is the number of partitions into odd
parts (n3 , wij all odd).

Consider partitions of the bipartite (n, m) of the type

(1.1) ^ = ^ + 71, + %.+ . . .

m — m1 + m2 + m3 + ,

where the ^ , m^ are nonnegative integers subject to the conditions

(1.2) min(%, m, ) ^ max(n i+1> m i + 1) ( i = 1, 2, 3, •) .

For brevity we may write (1.2) in the form

(njf πij) ^ (nj+u mj+ί) (j = 1, 2, 3, •)

and say that the "parts" of the partition (1.1) decrease.

Let π(n, m) denote the number of partitions (1.1) that satisfy
(1.2) and let p(n, m) denote the numbers of partitions (1.1) that
satisfy

(1.3) (nd, m3) > (nJ+1, m i + 1) ( i = l , 2, 3, •) .

By the inequality (1.3) is understood
221
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min(%, m3) > max(%+1, mj+1) (j = 1, 2, 3, . •) .

The generating functions for π(n, m) and p{n, m) are given by [2]

(1.4) Π (l - αVO" 1 (i - xψ-T1 (i - x'-ψ)-1,

(1 5) y feι/)ft
(1 - x) (1 - y) ZAV ; M (1 - α?V) (1 - <*y+V) (1 - »V+ 1)'

respectively.
For the case of unipartite (natural) numbers generating functions

are known for partitions with parts restricted in various ways [3],
The notion of a part of the partition (1.1) implied by the conditions
(1.2) suggests that these results can be extended to bipartite numbers.
For example, we may think of p(n, m) as the number of partitions of
{n, m) with unequal parts. We shall find generating functions for
bipartite partitions with at most k parts, weighted parts, and odd
parts.

2. Partitions with at most ϊc parts* We consider partitions of
the type

/ o 1 . n = nx + n2 + - -. + nk

m — m1 + m2 + + mk ,

where the nj9 mό are nonnegative integers subject to the conditions

(2.2) (nif mj) ^ (nj+1, mi+1) (j = 1, 2, . . . , k - 1) .

Let πk(n, m) denote the number of partitions (2.1) subject to the
conditions (2.2) and let πk(ny m | α, b) denote the numbers of these
partitions that also satisfy

(2.3) (α, 6) ^ (nu mx) .

Note that π(n, m) defined in § 1 satisfies

(2.4) π(n, m) — lim πk(n, m) .
fc=oo

We define the rational function ξffl of x and y by the recurrence

min(α,δ)

\ Δ δ) ςab — J-> ςab — ZΛ
 X V ζrs \K = *•)

r,s=0

If we put

(2.6) ζ(fc) = £<ίi ,

then in the limit (2.5) becomes
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(2.7) £<*> = Σ a Ί/ ίί*-1 ' (Λ ̂  1) .
r s=0

It is clear from (2.5) that ξffl is the generating function for
πk(n, m \ α, 6). Thus it follows from (2.6) that ξ{k) is the generating
function for πk(n, m). Explicitly, we have

\Δ,O) ζafr — / j TL^yϊv^ 110 I C6, U)JL> if ,
n,m=0

oo

We define the generating functions

(2.10) ^ ( i t , v) = Σ Ww'Sί i-1' ,
r,s = 0

oo

(^.11) ^ h — XxU ζnn~ ,
w=0

so that

(2.12) Fk(x, y) = f(7c) .

Using (2.10), (2.11) and

(2.13) £<*> - fi*6> (r = min(α, 6)) ,

we get

+ k-l)

1 — ̂ 6 1 *— v

It follows that

(2.14) Fk(u,v) =

On the other hand, using (2.5), (2.11), and (2.13), we get

oo n

n=0 r , s = 0

•*• / X"^ n.r™r~.s p lk — 1) ι

1 — I

1 / 1
+1 — % ^ 1 — ux 1 — uy

which implies
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(2.15) Fk(u) = — λ~XVUliΛ

( 1 — u) (1 — xu) (1 — yu)

It follows from (2.5), (2.11), and (2.15) that

1 Λ-2 "I _ Ύ2j+ln

(216) JP ίu) = TT
v * ' *v ; 1 M i

- xJ+1yj+1u) (1

Thus, using (2.12) and (2.14), we have evidently proved

THEOREM 1. If ξ{k) is defined by (2.9) then

/o 17) £(*) — TT i. — ju y
v * ; M (1 - α V ) (1 - xψ-1) (1 - x'-ψ) '

We may now write (1.5) in the form

n=l

(2.18)

which is analogous to the well-known identity

(2.19) Π (

3* A ^identity* If we put

then it follows from (2.4) and (2.9) that ζ is the generating function
for π(n, m). Moreover, it is clear from (2.14) and (2.16) that

(3.2) F(u,v)= Σurv8ζrs= iΛ

 1 ~ / Γ — Γ F ( u v ) ,

\O.O) r [U) = 2Λ U <»nn

oo

= e(u, xy) e(xu, xy) e(yu, xy) Π (1 — x2j+1y2j+1u2) ,

where

(3.4) e(t) = e(t, q) = f[ (1 - qH)'1 = Π - ^ - ,

We define the polynomial

(3.5) Hn(x) = f
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where

[;]=
It has been shown [1] that

/3 6x y Hk(x)Hk(y) tk =

Using (3.3), (3.4), and (3.6), we then have

Σtt\%. ~ Σ Hk(x)Hk{y) ukz(-i)r xΎvr .
o nn o (χy)k o (χy)r

Comparing coefficients of un> we get

(3.7) ξnn = - 4 - Σ (~ iy-k\ί]xn-kyn-kHk(x)Hk(y) .

Note that xy — q in the right member of (3.7).
It is clear from (3.7) that

(3.8) Pn(x, y) = (xy)nξnn

is a polynomial in x, y with integral coefficients which satisfies

1 - a ?

x*Pn(x, —) = (α;2 + a? + 1)% .
V x I

Also it follows from (2.15) that Pn(x, y) satisfies the recurrence

where [j] ~ 1 — ajyj/y.

4* Weighted partitions* We define π(n, m; λ), the number of
weighted partitions of the bipartite (n, m), by the relation

(4.1) φ , m ; λ ) = X λ f c Σ l ,

where the inner sum is extended over all partitions of the form (2.1)
subject to the conditions (2.2) and the additional condition max(wfc, mfc)>
0; that is, over all partitions with exactly k parts. It follows from
the definition of πk(n, m) that we may write (4.1) in the form
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(4.2) π(n, m; λ) = Σλfc(τrfc(w, m ) ~

It should be remarked that the sum in (4.2) is finite, the upper bound
for k being max(w, m).

Multiplying both members of (4.2) by xnym and summing over n,
m it follows from (2.9) and (2.17) that we have established

THEOREM 2. We have

(4.3) Σ π(n, m; X)xnym = 1 + (1 - λ) Σ λ ^ ' ( ί c , y) .
Q k l

Σ
n,m—Q

Note that (4.3) is a direct analogue of the well-known identity

(4.4) Π (1 - λ x T 1 = Σ λ M x w Σ ( l ~ a;')""1 .
n—1 ?i=0 i = l

We remark that (4.3) may be proved in a different manner. If
we put

min(α,δ)

(4.5) e.»(λ) = l + λ X afί/8f,s,
r,s=0

where the prime denotes that we sum over all r, s in the indicated
range except r — s = 0, then it follows from (4.1) that

(4.6) ί(λ) - UW

is the generating function for ττ(w, m; λ). We may then evaluate f(λ)
by the methods of §2.

5* Partitions into odd parts* We shall say that the j-th part
of the partition (1.1) is odd if each of nj9 m5 is odd.

Let φ(n, m) denote the number of partitions of the form (1.1)
with parts odd and subject to the conditions (1.2). Let ψ(n, m | α, b)
denote the number of these partitions that satisfy the additional
condition

(5.1) (2α + 1, 26 + 1) ̂  (nu m,) .

We define the rational function /52α+1,26+i of x, y by the relation

min(α 6)

(5.2) /Ste+i.«+1 = l + Σ * 2 r + y 8 + 1 / 3 2 r + 1 ; 2 s + 1 ,
r,s=0

so that

(5.3) β2τ+uir+i = Aα+i,2δ+i ( r = m i n ( α , 6)) .

If we put
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(5.4) £ = &.„,

then in the limit (5.2) becomes

(K K\ P — 1 _L V ~2r+lη.2a + l/Ω

It follows from (5.2) that

(5.6) ftβ+1Λ6+1 = Σ tfa* m I tt> δ ) ^ ^ W

Thus, using (5.5), we get

(5.7) β =
n,m=0

We define the generating functions

(5.8) H(u, v) = Σ urv'β^1Λt+1 f
r,s=0

(5.9)

so that

(5.10) β=l + xy H(x\ y2) .

Using (5.3), (5.8) and (5.9), we have

(5.11) H(u, v) = H{uv) .
(1 — u) (1 — v)

The proof of (5.11) is exactly like that of (2.14).
On the other hand, it follows from (5.2), (5.3), and (5.9) that

τj(q,\ — v ojnί 1 4- V r*r+iη.28+i o
JLiyiA) — 2-Jί M* \ -1- l 2-1 *" y H2r+l,2s-ϊ

w=0 \ r,s=0

"t" — 2-i X Ty SU T>S P2r+ί,2s+l
— U 1 — U r,s=0

1

which implies

(5.12) flflΓ(u) ( l + Γ
1 — u\ (1 — Λ )

Repeated applications of (5.12) yield
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(5.13) H(u) =

Thus, using (5.10), (5.11), and (2.17), we may state

THEOREM 3. // ψ(n9 m) denotes the number of partitions of
(n, m) with odd parts, then

OO OO

/P\ 1 A\ X~* f inn \ n m V"1 n nρ (n)/ 2 2\

w,m=0 n=0

where ζ{n)(x, y) is defined by (2.17).

The fact that (2.18) and (5.14) are analogous to well-known
identities for unipartite numbers leads one to conjecture that p(n, m) =
ψ(n, m). There are, however, counterexamples to this conjecture.
For example, it is easily verified that

p(β, 4) = 6 Φ 4 = ψ(5, 4) .

It would be of interest to know whether generally

p(n, m) ^ ψ(n, m) .
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