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Let G be an open set in E,, and let H,"(G) denote the
Sobolev space obtained by completing C;°(G) in the norm

Hunm={§ = 1Dm<x>12dx}”2.

G laj=m

We show that the embedding maps H;"*Y(G) c H/G) are
completely continuous if G is ‘“‘narrow at infinity’’ and satisfies
an additional regularity condition. This generalizes the clas-
sical case of bounded sets G.

As an application, the resolvent operator R,, associated
with a uniformly strongly elliptic differential operator A with
zero boundary conditions is completely continuous in .&%(G)
provided G satisfies the same conditions., This generalizes a
theorem of A. M. Molcanov.

Let G be an open set in Euclidean n-space E,. Following standard
usage, we denote by C;°(G) the space of infinitely differentiable complex
valued functions having compact support in G. Let H{"(G) denote the
Sobolev space obtained by completing C;*(G) relative to the norm

1fle={], = 1Ds@) s}

{See (3) below for notations.) It is an important and well-known
result of functional analysis that each embedding

Hy*(G)c HMG), m=0,1,2..-

is completely continuous provided G is a bounded set. In this paper we
show that this assumption can be relaxed; it turns out that a certain
condition on G called “narrowness at infinity” (see Definition 2), which
is obviously necessary, is also sufficient for complete continuity of the
embeddings, provided G also satisfies a certain regularity condition.
This result could be anticipated on the basis of theorems of F. Rellich
[4] and A. M. Moleanov [3] concerning discreteness of the spectrum
for the Laplace operator (with zero boundary conditions) on G.

DeFINITION 1. For an arbitrary open set G < E,, with boundary
0G, define

(1) o(G) = sgg dist (x, 0G) .

Clearly o(G) is the supremum of the radii of spheres inscribable in G,
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DerFINITION 2. The open set G is said to be “narrow at infinity” if

(2) lim p(Gg) = 0, where G, =G n{r:|z| > R}.
R—o0
Evidently G is narrow at infinity if and only if it does not contain
infinitely many disjoint spherical balls of equal positive radius. Our
main result concerns such sets G, but we also require the following
regularity condition;

1. Corresponding to each R = 0 there exist positive numbers
d(R) and /(R) satisfying

(a) d(R)+ d(R)—0as R— o

(b) d(R)O(R) =M< « for all R

(¢) for each x e Gy there exists a point y such that |2 — y| < d(R)
and GN{z:|z—y|<IR)} = @.

Note that Condition 1 clearly implies that G is narrow at infinity.
We use the following standard notations.

0

P R 7::112’""%;
0z,
(3) D* = Dfe.o Din for a = (a, -+, @,) ;
la|=Xa;.

The following theorem is a generalization of Poincaré’s inequality,
cf. Agmon [1]. Although the proof is similar to that of Agmon, we
give it here for the sake of completeness,

THEOREM 1. Let G be an open set in - E, satisfying the Con-
ditton 1. Then there exists a constant ¢ such that

(4) |, [f@ 1 do = @) | 21 Dife) ) do

for all fe Hy(G). Moreover if G satisfies only Condition 1(c) for
R =0, then the inequality (4) is valid for R =0,

Proof. Assume that G satisfies Condition 1. Let R > 0 be fixed,
and write d = d(R), é = o6(R). If ¢ = (ay, -+--,a,) is an n-tuple of
integers, let Q, = {x € K, : n "o, £ 2, < nPd(a, + 1), k=1, .-+, n}.
Then E, = U. Q..

Now let pe C2(G) and let v Ge N Q,; let y satisfy 1(c). Note
that Q,C{z:|z2—y|<2d}. Let S=1{z:|2—y| <0} and integrate
|p[* over Q, — S:
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[, Jordrs] | I da
Qu—5S sslz—yl<2d
= S S:d l@(r, o) Fr~'drdo ,
z

where Y is the unit sphere centred at . If 6 < » = 2d, we have by
Schwarz’s inequality

o, 0) ¢t = [, a)at] v
= @ | [pdt, o) " at
< 2d)" o g: |t o) [F £t |
Therefore, integrating over 0 < |x — y| = 2d, we obtain

|, loldr = @)ro— | S\ Dip* da

S<iw—yl=2d 4

= @ay+o= | S| Dolds,

where @, is the union of all cubes @ which meet the set 6 < |z — y| =
2d. There is a number N, depending only on %, such that any N + 1
of the sets @, have empty intersection., Summation of the above
inequality over the set A of all indices a for which Q, meets G
therefore yields

|, lordes ol da
GRr

Uage4(Qy—S)

< 3 (@d)io S S Dip | d
e,

a€4

= N2 M-@R) | S| Dol de,

where M is as in 1(b). This proves inequality (4) for @€ C;*(G); the
extension to Hy(G) is trivial,
The second assertion of the theorem is now obvious.

COROLLARY. Let G be an open set in E,, satisfying the condition
1(c) for R =0, and consider the morm | |, defined in H{G) by

Fl=, S D@ rds .
Then the norms | |, and || ||. are equivalent in H(G). On the
other hamd these morms are not equivalent for any open set G for
which o(G) = + o,
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Proof. Applying the second assertion of the theorem to the k-th
order derivatives of fe H(G) (k < m), we get |f|. = const. | f|4; and
hence || £, = > | f|2 = const. | f|5,. Since obviously | f|, = || f ||, this
proves the first assertion. For the second assertion, note that G must
contain spheres of arbitrarily large radius if o(G) = . Thus for
example H}(G) will contain suitable translates of the functions g,(x) =
g(a~'x) for arbitrarily large values of a, where g(x) = 0 is chosen as
some function in Cy({x:|x] < 1}). Since |g.|, = const.a|g,|;, an
inequality of the form

1 galli=10als + | gali = const. | ga |}

is precluded. This argument clearly extends to H(G).
We next introduce some useful notation., If R is a positive real
number, set

By ={xeckE,:|z|< R};
Gr, =GN By if G is an open set in E, .

DEFINITION 3. Let G be an open set in £, and let R > 0. Denote
by Cg°(G, R) the space of all C= functions on E, whose support is a
compact subset of G N B: We define H™(G, R) to be the completion
of C(G, R) with respect to the norm || ||,.

DEFINITION 4. We say that a sequence {x,} in a Hilbert space H
is compact if every subsequence of {x,} has a subsequence converging
in H.

Thus a linear operator T: H,— H, (H, a separable Hilbert space)
is completely continuous if and only if it maps bounded sequences
into compact sequences.

THEOREM 2. If G is an arbitrary open set in E, then the
embeddings

H"@ R)cH"G,R), m=0,1,2---

are completely continuous.

Proof. This follows easily from the complete continuity of the
embeddings H"+(By) c H™(By) = H™(E,, R) [2, Ch. XIV]. For let
fe H™G, R) and let {f;} be a sequence in C;*(G, R) with || f, — f|[»— 0.
Extending f, to be zero outside its support, we get f,— 7 in H™(Bz)
where f is obtained by extending f to be zero in Bj — G, Now if
{p;} is a bounded sequence in H™+(G, R), then {®;} is bounded in
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H™(B%) and hence compact in H™(B:), and therefore {p,;} itself is
compact in H™(G, R).
The following criterion for compactness is well-known.

LeEMMA. Let {f,} be a bounded sequence in (G), where G C E,.
Suppose that

(a) {fu|G'} s compact for every bounded subset G’ of G, and

(b) given € >0, there exists R >0 such that for all k,

|, [fs@)do <.
Then {f.} is compact in F(G).

THEOREM 3. Let G be an open set in E,, satisfying the Con-
dition 1. Then G is narrow at infinity and each of the embedding
maps

Hom+1(G) - HOM(G) ) m = 07 1’ 2’ tee

18 completely continuwous. On the other hand 1f G C E, is not narrow
at infinity, then the indicated embeddings are mot completely con-
tinuous.

Proof. First, if G is not narrow at infinity, it must contain an
infinite denumerable family {U;} of nonintersecting spherical balls of
equal positive radius. Let f, be an arbitrary nonzero function in
Cy(U), and let f; be constructed for j = 2,3, --+ by translating f;
to have support contained in U;. Then we have

(f5y fo)m = Culs,;

where ( , ), is the natural inner product in HG) and ¢, is a
nonzero constant depending only on m and f,. Consequently none of
the embeddings can be completely continuous.

To prove that if G satisfies Condition 1 then the embeddings are
completely continuous, it suffices by the standard inductive argument
to consider the case m = 0. Thus suppose {f,} is a sequence in Hy(G)
with [|fi]. = 1. If G is a bounded subset of G, then G’ G} for
some R, and by Theorem 2 the sequence {f, |G} is compact in < (Gx),
and a fortiori {f,| G’} is compact in <45(G’). Thus (a) of the Lemma
is satisfied; to verify (b) we merely have to apply the inequality (4)

to fi:

|, 1£:@) [ d < o@(R)* || £ull = @B -
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By hypothesis the right hand side approaches zero as R — oo,

Functions in H™(G) vanish in some sense on 0G. This property
is essential for the embedding theorem in the case of unbounded sets
G, as is indicated in the following theorem, Here H™(G) is the Hilbert
space of functions which together with their (distribution) derivatives
of all orders <m are in _Z(G).

THEOREM 4. Lei G be an open set in E,, contained in a cylin-
der of finite n — 1 dimensional cross-section., If G has infinite n
dimensional volume, then the embedding H'G)C LA(G) is mot com-
pletely continuous.

Proof. Assume that the wx,-axis is the centre of the cylinder
containing G, and let C denote the # — 1 dimensional volume of the
section of the cylinder by the hyperplane z, = 0. We may also suppose
that p, (G N{x:2, > 0}) = o; then for fixed a, ,(GN{x:a =2, = b}
is a continuous inecreasing function of b = @, with range the half-line
[0, o).

For x e E, define the function f(x) as follows.

X, fo=s2,=1

ifl=sw =0
1+0 —a ifo=a=20+1
0 otherwise,

where ¢, (GN{x:1 <2, < b}) = 1. Similarly define f,(x) to have support
in the strip b, + 1 =2, b, + 1, where ¢, (GN{x:b, +1 =2, b)) =1,

and so on, Then f, I f; (j # k) and

1=1illisl +2C.,

Moreover

[FAS R S S| D fil@) [ da

G i

SWfilp+2C <1+ 4C.

Thus the sequence {f,} is bounded in H*(G) but not compact in <5(G),
so that the embedding HY(G) C H°(G) = 4(G) is not completely con-
tinuous.

As an application of Theorem 3, consider a given differential
operator a(x, D) of order 2m:

a(x, D) = msz;,m a.(x)D .
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We assume that the coefficients are infinitely differentiable, bounded
complex functions on an open set G in E,. Let a(x, D) be uniformly
strongly elliptic in the following sense:

(—1)™Re (ay(x, &)) = const. | £, xe G, e K, ,
where a,(x, &) is the characteristic form,

ay(x, &) = m% A (X)E” .
Under certain additional conditions on the coefficients a,.(x) and
on the set G, it is known that the following inequalities are valid

(ct. [1]).

(5) | (@@, D)p, ) | = const. {|@|ln [ lln, @, ¥ € CT(G) ;
and “Garding’s inequality”

(6) Re (a(z, D)p, ) = ei |l @llh — el @il e Co(G) ,

where ¢, > 0 and ¢, are constants, For the purpose of the following
theorem we use these inequalities as hypotheses. Theorem 5 was
obtained in the case of the Laplacian operator in a smoothly bounded
domain G by A. M. Molcanov [3].

THEOREM 5. Let G be an open set in E,, satisfying the hypo-
theses of Theorem 3. Let a(x, D) be a wuniformly strongly elliptic
differential operator with coefficients defined in G, and suppose that
the inequalities (b) and (6) are satisfied. Define the operator T in
Z(G) by

2(T) = HMG) N {fe ZA(G) : a(x, D)f e Z5(G)}
Tf = a(, D)f, fe=z(T).

Then T 1is a closed linear operator; the spectrum o(T) is discrete
and has no finite limit points; for Néo(T), the resolvent operator
RB(T) = (I — T)* is completely continuous.

Proof. We have worded the theorem to agree with Corollary
14.6.11 of [2]; in fact the proof is the same, At the suggestion of
the referee, however, we include an outline here,

If \ is a given complex number with Rex > ¢,, we have by (5)
and (6)

(7) [ (@ + M@, ¥) | = kil @l L9 [lny @5 ¥ € C(G) 5
(8) Re (@ + Mo, @) = ks |l @[5 peCrG) .
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Hence ((a + M), ) can beé extended to a continuous bilinear form
B, ] on H{(G), satisfying (7) and (8). By the Lax-Milgram lemma
(cf. [1], p. 98), to each » € H(G) there corresponds an element Ap € H"(G)
such that

(9) BlAgp, v] = (@, ¥)n,  for all ye¢ H"G) .

Moreover A: H(G) — Hy(G) is bounded, one-to-one, and hence onto.
By the open mapping theorem, A~ is also bounded.

Next, if T is the operator defined in the theorem, we will show
that

(10) (T +ADo, ) = (A7, ¥)u , @€ D(T), v € HG) .

This relation is evident for o, 4€ C(G). If pe HMG), 4 <€ C(G),
and if @,(€Cy(G)) — @ in the norm of H{G), then ¢,— @ in the
sense of distributions on G, so that ((a + N)@., ¥) — (@ + N, 4,
and therefore

((CL =+ )“)‘P’ "lf) = (A-I(Pa ")b‘)m y PE HOm(G)r AS CO”(G) .
This implies (10) immediately.
By (8), (9), and (10) we have for o€ 2(T)

(T + XDl [l @ ln = [ (T + M), )|
= [(A"p, @)u| = | Blp, @] | = k.|| @ || «

Hence (T + M) exists and is bounded on Range (T + AI). Another
simple argument shows that Range (T + M) = #(G). We therefore
conclude that T is closed and \ e p(T), the resolvent set of T.

By (11) we have

(11)

T+ D)7 plln = k'l @ll, peA(G) .

Thus (7 + N)™* maps a bounded set in .Z3(G) into a bounded set in
H@G), which, according to Theorem 3, is precompact in .<5(G).
Therefore (T + M)~ is a completely continuous operator in Z(G).

The remaining assertions of the theorem follow from the Riesz-
Schauder theory of completely continuous operators.
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