Pacific Journal of
Mathematics

A THEOREM ON ONE-TO-ONE MAPPINGS

EpwIN DUDA




PACIFIC JOURNAL OF MATHEMATICS
Vol. 19, No. 2, 1966

A THEOREM ON ONE-TO-ONE MAPPINGS

EpwIiN Dupa

Let X be a locally connected generalized continuum with
the property that the complement of each compact set has
only one nonconditionaily compact component., The author
proves the following theorem. If f is a one-tc-one mapping
of X onto Euclidean 2-space, then f is a homeomorphism,

An example of K. Whyburn implies that if f is a one-to-
one mapping of X onto Euclidean n-space (n = 3), then X can
have many nice properties any yet f need not be a homeo-
morphism., However the complement of a compact set in the
domain space of his example may have more than one non-
conditionally compact component,

It is interesting to note that a characterization of closed
2-cells in the plane is obtained in the course of proving the
theorem,

Positive results in connection with the following problem would
be useful in classifying mappings from a Euclidean space into itself,
‘““What properties must a topological space X have before one can
conclude that every one-to-one mapping f of X into a Euclidean space
E" of dimension % is a homeomorphism?’’ A very general theorem
of this type was supposedly obtained in [2]. However, several coun-
terexamples have been obtained which show the main theorems of [2]
to be false. One of these is an example of K. Whyburn [6], which
implies that if » = 3, X may have many nice properties, yet f need
not be a homeomorphism. We prove that if the Euclidean space has
dimension two, the mapping f is onto, and X has appropriate properties,
then f is indeed a homeomorphism. It is interesting to note that we
assign a property to the space X which is not a property of the domain
space of the example in [6].

2. Notation. A mapping is a continuous function. A generalized
continuum is a connected, locally compact, separable metric space.
The cyclic element theory used is that of reference [4]. A set A in
a topological space is conditionally compact if its closure is a compact
set. A dendrite is a compact locally connected generalized continuum
containing no simple closed curve, A topological line is a homeomorphic
image of the real line, A topological ray is a homeomorphic image
of a ray in the real line,

3. Theorem and proof.

THEOREM. Let X be a locally connected generalized continuuwm
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with the property that the complement of each compact set has only
one nonconditionally compact component. If f(X) = E* is a one-to-one
mapping, then f is a homeomorphism.

Proof. The proof consists of proving a series of five statements
concerning the structure of X if f is not a homeomorphism, Then
in (vi) with the aid of a theorem of G. T. Whyburn [5], a contradic-
tion is obtained.

(i) X contains simple closed curves.

Proof of (i). The space X has the representation, X = Uz, 4,,
where each A; is a locally connected continuum. If X has no simple
closed curve, then no A; contains a simple closed curve. Thus each
A, is a dendrite and therefore has dimension one, Using the sum
theorem for dimension, we obtain dim U7, f(4;) = 1, but Uz, f(4;) = E*
and dim E? = 2. Clearly then each such X must contain simple closed
curves.

(ii) Every simple closed curve J in X separates X and is the
boundary of an open two cell which is an open subset of X.

Proof of (ii). For a simple closed curve J in X, f(J) is a simple
closed curve. Since f(J) separates E*, its inverse image J separates
X. The complement of J, X-J, can have at most countably many
components, C;,2=0,1,2, ---, and only one of these, say C, is not
conditionally compact. Each f(C;), ¢ # 0, is closed in E* — f(J) and
each f(C;),7=0,1,2, --. is either in the bounded component W or
the unbounded component M of E® — f(J). The set f(C, is not
contained in W for this would imply that M is the countable union
of pairwise disjoint bounded closed (in M) sets f(C,), k=1,2,---.
No arcwise connected space has such a representation hence f(C,) C M.
Applying the same theorem to W shows there is one and only one
C;, 1+ 0, for which f(C,) © W and hence f(C;) = W. It easily follows
that f(F,C;) = f(J) and therefore F,.C; = J.

(iii) Each compact nondegenerate cyclic element of X is topologi-
cally a closed 2-cell,

Proof of (iii). Let C be a compact nondegenerate cyclic element
of X and note by (ii) that every simple closed curve in C is the boundary
of an open 2-cell of C. Since f/C is a homeomorphism we can assume
that C is a subset of E-2,

Let H be the set of points of C that are interior to an open 2-cell-



A THEOREM ON ONE-TO-ONE MAPPINGS 255

of C. By cyclic connectedness of C, H is dense in C. To show H is
connected let ¢ and b be distinct points of H and let J, and J, be
disjoint simple closed curves in C that bound nonintersecting open
2-cells C, and C, containing « and b respectively. By cyclic connected-
ness of C there exist mutually exclusive arecs 1, and 1, in C with
LN (C1 U J1) =1nN Jl = Ly, 1N (Cz U Jz) =1nN le = Ly 120(01UJ1) =
.NnJ, =2y, and L,N(C,UJd) =1L, NJ, =2, The set 1,U (x,2,) U
1, U (®%,,), where (x,2.,), (¥,,%,) are ares on J, and J, are respectively,
is a simple closed curve in C. The proper choice of arcs (x,.%,) and
(x52) on J, and J,, respectively, gives a simple closed curve J, in C
that bounds an open 2-cell C, which contains both « and b.

We use the Zoretti Theorem, p. 109, [4], to prove C-H is connected.
Suppose C-H is not connected and K is one of its compact components,
By Zoretti’s Theorem there is a simple closed curve J, in E* enclosing
K and not enclosing C-H and is such that J, N (C-H) = @. The set
J,NC =J,N H is not empty and is both open and closed in J,, Hence
J, < H and this implies K < H which is false,

Let # and y be distinet points of C-H, By the cyclic connected-
ness of C and the connectedness of H there is a simple arc (xy) in C
with (xy) N (C-H) =« Uy. Suppose this arc does not separate C and
let ze (zy), 2 # x, 2 = y. Since ze H there is a closed 2-cell C, in H
with boundary J, such that z is interior to C, and (xy) separates C,
into two connected sets A and B. Let acA and bzB and suppose (ab)
is a simple arc in C-(xy).

In C, determine an arc azb such that (ab) union azb is a simple
closed curve J,, The curve J; is the boundary of a closed 2-cell C,
in C. The 2-cell C; contains points of A and B and hence points of
one of the subares (xz) or (zy) of (xy) other than z. Since J; meets
(zy) only in the point z, at least one of x or y is interior to C,.
This contrary to the choice of # and y. Therefore, each such arc
spanning C-H in C separates C. Furthermore, H-(ry) has only two
components and hence C-(xy) has only two components since H is
dense in C. Also, each component of C-(xy) contains points of C-H,
otherwise there would exist a bounded open subset of the plane with
a simple arc as its frontier. Thus each pair of points z,y of C-H
separates C-H and therefore C-H is a simple closed curve J. Clearly
H is the open two cell of C bounded by J.

In order to make repeated use of a theorem in [5] we set up the
following notation. Let f(X) = Y be a one-to-one continuous mapping
of one locally compact separable metric space onto another. Let S
be the set of points in X at which f is a local homeomorphism and
let T be its complement, From a result in [3] the set S is open, T
is closed, f(S) is an open dense set in Y. The sets S and 7 will be
used in the remaining parts of the proof. The following is a theorem
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of G, T. Whyburn [5].

THEOREM A, Let X be a locally compact arcwise connected
separable metric space, let Y be a locally comnected generalized
continuum, If f(X) =Y 4s a one-to-one continuous function which
18 not a homeomorphism, then there exists a topological ray R in X
with f(R) a simple closed curve in Y. Moreover, if r is the tnitial
point of R, there is a subray R’ of R such that f(R' U r) is a simple
arc and R C S,

(iv) There is only one noncompact cyclic element in X,

Proof of (iv). If there were two or more noncompact cyclic
elements then one could find a compact set (namely a point) whose
complement would necessarily have two or more nonconditionally com-
pact components, This is contrary to part of the hypotheses on X.

If all the cyclic elements were compact then by (iii), all the true
cyclic elements would be closed 2-cells, Thus S would be the union
of open 2-cells, By Theorem A there is a ray R’ and a point » not
a R’ such that f(R'Ur) is a simple arc and R'c S. Thus R’ must
be a closed subset of X which is entirely in an open 2-cell and this
is not possible,

(v) Let M be the noncompact cyclic element of X and let
B=MnNT. The set B is a topological line.

Proof of (v). As in the proof of (iii), the set M-B is connected.
For two distinct points ¢ and b of B there is a simple arc [ab] in
M with [abl N B = a Ub. Using the techniques of the proof of (iii),
it follows that the arc [ab] separates M into two connected sets. The
closure of the conditionally compact component D is cyclically connected
and every simple closed curve in D bounds an open 2-cell of D. Thus
by (iii), D is a closed 2-cell and this implies that there is a simple
arc (ab) which is entirely in B. Moreover, the set (ab)-{a U b} is an
open subset of B, If ¢ is any other point of B not on (ab), then
there is a simple arc joining ¢ to @ and the first point (ordered from
¢ to a) in which it meets (ab) can only be a or b. Thus, either a or
b is in an open one cell which is an open subset of B, It follows that
every point of B with the possible exception of at most two points is
in an open one cell which is an open subset of B. That is, B is a
simple arc, a topological ray or a topological line. The set B cannot
have a point d which is not interior to a one cell of B for this would
imply that M is not locally compact at d.
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(vi) Completion of proof,

The structure of the space X is now clear in the sense that certain
properties can be assigned to the true cyclic elements, Also, each
component of the complement of the noncompact cyclic element M is
conditionally compact and has only a single point of B as its frontier,

There is a ray R, in X with initial point #», such that f(R,) is a
simple closed curve bounding a closed 2-cell C,. From the proof of
Theorem A and the structure of X we can assume R, meets B in only
one point z,. The set f~(C,) = N, is closed, connected, locally con-
nected, and contains one of the two components of M-R, Let
y€ BN N, and let (z,y) be the simple arc in B. Let K be (x,y) union
the conditionally compact components of X-(z,y). The set K is
compact and connected, The set f(KN T) is compact in C, so that
(f(TYNCy)-f(KN T) is an open subset of f(T) N C,. Thus, in apply-
ing the proof of Theorem A to the map f/N,;: N,— C, we can use the
points of (f(T) NCYP-f(KN T) to get a ray B, with the property that
R, c N~K, Assume the initial point of R, isr, B, N B = x,, C, is the
closed 2-cell bounded by f(R), and N, = f(C)). The set N, is con-
nected, locally connected, and N, N K = @. In fact, the arc (z,) in
B maps onto an arc in the closed annular region determined by f(R,)
and f(R). Also implied is that a sequence of rays R, R, R,, --- can
be obtained such that lim sup B, N T = @. We can also suppose the
rays were chosen so that a monotone sequence of locally connected
generalized continua, N, N, D N, D ... with corresponding closed 2-
cell images C,>C,>C, > ... is obtained. For each ¢,¢=10,1,2 ...,
the set C; N f(T) is nonempty and compact., Thus, L = N, [C; N A(T)]
is not empty and for ye L there existsan xe (TN N,;),7=10,1,2, ---
such that f(¥) =y. However, by the construction of the N,

(NN T =@.
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