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A Schnirelmann type density is defined for sets of
"nonnegative" lattice points. If A,B and C = A + B are
such sets with densities a, β and γ respectively, then it is
shown that γ ^ β/(l — a) provided a + β < 1.

1* Let n be a positive integer and let Q be the set of all vectors
r = (ρl9 . , pn) where each pi is a nonnegative integer and at least
one Pi is positive. We define a partial order relation < on Q where
r < 8 if and only if ^ ^ σt (ί = 1, 2, , w) with strict inequality-
holding for at least one index. Denote by L(r) the set of all x in Q
for which either x < r or x = r.

A nonempty finite subset F of Q is called fundamental if, whenever
r e F, then L(r) £ F. For 4 , I S Q with X finite, let A(J5Γ) denote
the number of vectors in A Π X. Then the (Kvarda) density of A is

where JP ranges over all fundamental subsets of Q.
Let B £ Q and define A + 5 = {a, 6, α + b \ a e A, b e B) where

addition of vectors is done coordinatewise. Let β and 7 be the densities
of B and C ~ A + B respectively. Kvarda [1] has proved the inequaliy
7 = a + β — aβ which for n = 1 was first proved by Landau and
Schnirelmann. In this paper we prove 7 ̂  /5/(l — a) provided a + β < 1.
For w = 1, this has been proved by Schur [2]

2* Main results*

LEMMA 1. Lβί C denote the complement of C in Q and suppose
C Φ φ. For a fundamental set F let F* denote the set of maximal
vectors of F with respect to the partial ordering < . Then

Q(F)

where F ranges over all fundamental sets with F* £ C.

Proof. Let 7' denote this gib. Clearly 7 ^ 7'. Let G be any
fundamental set. _ If C(G) = Q(G) then C(G)/Q(G) = 1 > 7'. If
C(G) < Q(G) then Cf]GφΦ. In this case let F be the union of all
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sets L(g) where geC Γ) G. Evidently F is a fundamental set, FQ G,
and F * s C. Thus,

F) Q{F) + Q(G - F)

and so 7 ^ 7'.

LEMMA 2. If F is a fundamental set with
^ aC(F) + B(F).

F) > jC(F)_ > ,
" Q(F) ~ '

Proof. Let gl9 g2, , gk be the vectors of C f) F, indexed in such
a way that

( 1 ) 9i< Qj implies i < j .

Define iϊ, - L(gλ) and H i + 1 = L(ffί+1) — \JUHά. Then
(2) the Hi are disjoint,
(3) the union of the Hi is F, and
(4) for each i, ^ e iί^.

Now (2) follows immediately by definition, and (3) from the fact that
since F * g C , we have for each xeF, that xeL(gi) for some i. To
prove (4) notice that g{ & Hi implies g{ e U^Hj, which in turn implies
gieL(g30) for some jQ < ί, contrary to (1).

For each ί let tH{ be the set of all vectors ^ — x where x
ranges over Hi — {gj. Then

(5) tHi is either empty or is a fundamental set, and
(6) Q(tHi) = Q(Hi) - 1.

To show (5) let z be an arbitrary vector in tHi and let yeL(z). We
h a v e gi- z^gi-y < g^ T h u s gi- ye L(g%) - {^} a n d , s i n c e
^ - z e H^ we have ^ - ye Hi- {#<}. Hence ^ - (^ - 2/) = j/e ίfl"i
and so L(«) S ίJϊi. Equation (6) is immediate.

Now, for each a e A Π £ff;, there exists a unique xe Hi — {#;} such
that α = flTi — x. Thus ίK65. Also, by (4), we have g{eB Π H{ and
so

+ 1

^ aQitHi) + 1 (from (5) and the definition of a)

= aiQiH,) - 1) + 1 (from (6)) .

Summing over i, using (2) and (3), we obtain

B(F) ^ a{

that is,
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C(F) ^ aC(F) + B(F) .

THEOREM. If a + β <1 then 7 ^ β/(l - a).

Proof. Since β < 1 - a and a < 1, then β/(l - a) < 1. Hence
if 7 = 1, the theorem follows. If 7 < 1, then C Φ Φ and for any-
fundamental set F with F * g C we have by Lemma 2

C(F) ^ α'C(F) + β(i^) .

Hence,

C(F) ^ C(F) B{F) ^

Q(F) = a Q(F) + Q(F) =aΊ + V

By Lemma 1 7 ^ <̂7 + β that is, 7 ^ /5/(l — α).

3* Remark. A result of Kvarda [1] states that if a + β ^ 1
then 7 = 1. This result and the above theorem can be used to prove
quickly that if a > 0 then A is a basis for Q, that is, nA = Q for
some w, where %A — (i — ί)A + A for ί ^ 2. Thus let 7* denote the
density of ίA and assume that nA Φ Q for all n. Then, for all
k,yk + a <1, and so

> Ύfe—1 > . . . >

" 1 - a ~ (1 - a)2 ~ " (1 - a)k (1 - a)k

But, for k sufficiently large, (a/(l — a)k) ^ 1, a contradiction.
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