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It is known that the solution % of the heat equation
0u/ot = 4u. under the boundary condition v = 0 decays as
ey for some 12> 0 as t— o, This gives us information
about the asymptotic behavior of the solution % in time.

There arises the question whether such a theorem is valid
for parabolic differential equations with variable coefficients.

In this note we shall treat this problem and prove that
the theorem analogous to the above holds for parabolic dif-

ferential inequalities of higher order under some additional
restrictions,

Consider the unit sphere < in the m-dimensional Euclidean space
E* with boundary 7" and denote by I(T) the interval 0 =¢t =T
and by I the half-infinite interval 0 < ¢ < «. The (n + 1)-dimensional
domain &7 x I will be designated by R, while S will be the portion
I" x I of the boundary of R.

We are interested in the growth of functions w(x, t) which satisfy
the differential inequality of the form

(L = e(t) 3| Diu

in Rand Diu =0 (lja| =s—1) on S. Here L is a parabolic differ-
ential operator of higher order written in the form

(1) L= (-1y

a - Z aaD:y

ot la[s2s

where all the coefficients @, = a.(x, t) are s-times continuously differ-
entiable in (a neighborhood of) R U S and

(2) A= > a,D;

lal<2s

a'.&l )
X = e— f— “ o fr— 4 + e + (84
<‘DI a{l}fl .. ax‘fm’ 44 (aly ) an)7 ! « ‘ al n

is assumed to be uniformly elliptic throughout R U S, i.e., there is a
constant %, depending only on A such that

HSZ;, Qb Z ko (81 + +++ + &)

for any real vector & = (&, ---, &,).
Let v(x, t) be a 2s-times continuously differentiable function in
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R U S such that

(3) Div =20 (la|<s—1) on S
and
(4) v(x, t) =0 in (x,t)e 2 x I(T,)

for some T,. The function v satisfying (3) and (4) is said to belong
to the class V,
We shall prove the following theorem.

THEOREM. Suppose that u satisfies the inequality
(5) (Lu) = c(t) > | Diu i’
laiss

m RUS and that Diu (|a| s — 1) vanish on S and suppose that
the condition

lim S eMutdr =0
holds for any x\ > 0. If c(t) is bounded and continuwous in I and if
c(t) = 0(t™)(t — o) then u is identically equal to zero throughout R.

This is an analogue to Protter’s theorem [2], where parabolic
operators of second order are considered.

2. To prove the theorem, we prepare two inequalities deduced
from the following lemmas whose proofs are found in [1].

LEMmA 1. Assume that the differential operator A in (2) is
uniformly elliptic in RUS. If visin V, if f = f(t) is in C'([0, «))
and if g = g(t) continuous in [0, o) has no zero, then there exist
two positive constants k, and k, depending only on A such that

lcSL ft S| D dadt < “szgz(Lv)z dadt

la|<s

+ SS (kaf? — 2F" + Frg~0* dadt + limS ot ds
R t—ooo J 2
LEMMA 2. Suppose that v is in V and that f= f(t) is in C=([0, c))
and g = g(t) continuous in [0, o) have mo zero, then for a given
operator L wn (1), there exists a constant k, depending only on A
such that
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HR Ffrvdadt < S SR FH(Loydedt
+ kaﬂﬂ (f*9* + f "9 2 | D * dedt

+ limg ffde .
t—oo 2
First, if ve V, then by putting f = ¢ and g =1, Lemma 1 im-
plies that there exists two positive constants %, and k, depending only
on A such that

(6) kgg e™ V| Diw Pdadt
R

lalss

= Sg eM(Lv)y*dadt + H Mk, + L)vidadt.

Next, if ve V, then by putting f=¢* and g =1/ % it follows
from Lemma 2 that there exists a constant %k, depending only on A
such that

(7) H e\ rdadt
R

< Sg N Loydadt + 2@“ S | Do P deds.
R R lej=s
These are analogues to Protter’s estimates, Lemma 3 and Lemma 4
in [2].
From (6) and (7), we get

(kl ~ Mmﬂex S | Do [ dadt

la|=s

< (1 + k:; 1 >SSReW(Lv)2dxdt, ve V.

So, if \ is sufficiently large, for instance, if » = \,, we have

(8) %“Rew S| Do P dwdt

laj=s
< 2“ M (Loydadt
for ve V.

3. Now we give the proof of theorem. Let ¢ = () be an in-
finitely many times differentiable function of ¢ such that
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0 ,0=t=T,
pt) ={0<p <L, T.=t=T
1 J TSt < oo

for some T, and Ty(T, < T.).
The function v(x, t) = @(t). u(x, t) is in the class V and the ine-
quality (8) is valid for ». We put

R(T, — T\) = & x ((T,) — [(T\)) and R(T)= 2 x - ITy).
The inequality (8) implies that

’LSS M S| Do [ dedt
R(T3)

2 la[=s

=2 SS ML) dedt +2 Sg
R(Ty—T7) R

R(T

eM(Lu)ydadt .
9)

We substitute (5) into the last integral on the right and get

“ [k_ - 2c(t)]em S | D | dedt
r(ry)l 2 |ai=s

< 2“ N (Loydadt .
R(Ty—T7)

Since ¢(t) = 0(t™*)(t—oc) by the assumption, we see that there
exists a positive constant & such that k,/2 — 2¢(t) >4 if ¢ = T, for
some sufficiently large T,(>T.). It holds that

« . 2 n(T.—T()SS 2 70
HR S | Do dvdt = 2 enremol| Loy dedt.

(Ty) lalSs

Since M(=1,) is arbitrary, letting A — oo, we see at once that u = 0
in R(Ty).

As ¢(t) is bounded in I, we can apply the theorem in [1] for this
function % and we can conclude that % vanishes throughout R.
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