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In the discussion of weak solutions of certain kinds of
partial differential equations, a crucial point, which is iso-
lated in this paper, concerns the proof of identities of energy
type and of the continuity of the solutions, which two ques-
tions are intimately related. The continuity referred to is
with respect to a distinguished independent real variable ¢,
the other variables being suppressed into some Banach space,

In §2 a simple argument shows that an essentially bounded
function of ¢ with values in a space V is automatically weakly
continuous in V provided it is weakly continuous in some larger
space,

In § 3 conditions are found under which a square-integrable
function u(t) with values in V is strongly continuous in V
(Theorem 3.3). Roughly speaking, the main condition is that
there exist self-adjoint linear operators A(f) coercive with re-
spect to V such that A(-)u(-) and du/d¢ lie in spaces which are
dual to each other.

The proof is based on an energy identity (Theorem 3.1). Theorem
3.3 has application to certain equations of the form

(1.1) A(t)u(t) = (possibly) nonlinear terms in du/dt
(ct. [5]).

The analogous strong continuity and energy problems for equations
like (cf. [4])

(1.2) dujdt® + A(t)u(t) = (possibly) nonlinear terms

are considered in §4. These results are used in [6].

Torelli [7] solved these problems in the case of linear equations
(1.2). Partial results for the nonlinear case of (1.2) were obtained in
[4] and [1] and for (1.1) in [5]. Here Torelli’s method is generalized
so as to be applicable in the nonlinear case of (1.2) as well as to (1.1).
In each of these cases variants of a regularization procedure of Lions
and Prodi [3] for the Navier-Stokes equations are used. Lions [2] also
proves a different case of Theorem 3.2,

2. Weak continuity, We begin with some definitions, If V
is a Banach space and 2 is a real closed interval then by L#(Q; V)
we mean the space of all strongly measurable functions # on 2 into
V such that
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fule = lue)pat <
if 1<p< o and

[|w|| = esssup {| u(?) |, t € 2}

if p=-c., By C,2;V) (resp. C,(2;V)) we mean the subspace of
L=(2; V) consisting of those functions which are a.e. equal to weakly
(resp. strongly) continuous functions with values in V., Primes on a
function of ¢ denote (weak) derivatives with respect to ¢, For a space
V, V' denotes the “dual” space of all continuous conjugate-linear func-
tions on V,

THEOREM 2.1. Let V and Y be Banach spaces, V reflexive, V a

dense subset of Y and the inclusion map of V into Y continuous.
Then

L0, T; V) 1 C.(0, T; Y) = C,(0, T: V) .

Proof. Let u be weakly continuous with values in Y and
we L0, T; V). We must show that it is also weakly continuous
with values in V. (The converse is obvious.) It suffices to prove
that there is a constant M such that

2.1) w(t) e V and |u(t) |, = M for all te0, T].

Indeed, if (2.1) is true we can choose from any convergent net ¢, —t,
of numbers [0, T] a subnet ¢, such that w(¢,) converges weakly in V.,
Since u is weakly continuous with values in Y, the limit of this subnet
must be u(t,). Therefore wu(t,) — u(t,) weakly in V.

To prove (2.1) we define approximate delta-functions 7.(t) in the
usual way: let 7,(t) be a nonnegative even C=-function on the real
line with compact support and integral one; define 7.(t) = e7'7,(¢/e)
for ¢ >0, Now consider 0 <t < T so that (n.+u)(t) eV for suf-
ficiently small e. Let M be the norm of % in L=(0, T; V). Then

ey = (7o) [0t ~ ) ds = M,

So there exists a net of ¢’s such that (n.xwu)(t) converges weakly in
V. On the other hand, for all v € Y,

(gexu)(t) — u(t), v)—0 as  e—0
since (u(s), v) is a continuous function of s. It follows that w(f) € V,

(e % w)(t) — u(t) weakly in V
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and |u(t) |, =< M,

To prove (2.1) for the case ¢t =0, we apply a similar argument
with (.*u)(t) replaced by (n.xu)(e); and for ¢t = T, we consider
(77&* u)(T — e).

COROLLARY 2,1, Let V and W be Banach spaces, V reflexive,
both contained in some fixed linear space, and VN W dense in V
and wn W, If we L=(0, T; V) and «' = du/dt e L0, T; W), then there
exists a weakly continuous function on [0, T'] with values in V which
is equal to w almost everywhere.

Proof. The space Y = V + W satisfies the conditions of Theorem
1. The assumptions on % imply, in particular, that we L'(0, T; Y) and
we L'0, T;Y), Therefore w is weakly continuous with values in Y,
and Theorem 2.1 may be applied.

3. Strong continuity. We are given a reflexive Banach space
V and a family of hermitian linear operators A(t): V—V’' (0=t T)
which are weakly continuously differentiable functions of ¢, If
ue L0, T; V), we denote by Awu the function ¢— A(t)u(t) and by
A'v, the function ¢— [dA(t)/dt]u(t). By the uniform boundedness
principle, A(f) and A’(t) = dA(t)/dt are uniformly bounded operators
from V to V', The pairing between elements of V and V'’ is denoted
by (, ).

Secondly, we are given another Banach space W as well as a
linear space containing both V and W such that V' 0 W is dense in
V and W.! In addition, Z is a Banach space such that

ZC L0, T; W), Z'c LN, T; W’

as dense subsets with continuous inclusion. If fe Z’, we Z and {f, u)
indicates the pairing, we assume that (f(¢), u(t)) [pairing in W] is
integrable and

(3.1) <y = | (7w, uepat .

Furthermore, we assume that multiplications by step functions map
Z into Z and that translations in ¢ are continuous in the strong
operator topology on Z (where functions are extended to be zero
outside [0, T'] when necessary).

THEOREM 3.1. Let ue L=0, T; V),*w = dujdte Z and AuecZ’,
Then for every te|0, T

i Elements of ¥V’ and W’ are identified if they agree on V N W.
2 Whence Auec L0, T; V') and #’ is a distribution with values in V.
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(3:2)  (Alu(®), u(t) — (AOu0), w0) = | (4'u,w) + 2Re | (Au,w) .

Proof. By Corollary 2.1 we may assume that u is weakly con-
tinuous with values in V) We shall prove (8.2) for a fixed t = ¢,
D<t,=T. Let 0, be the characteristic function of the interval
[0, ¢,]; for small 6 > 0, let 6(t) = 05(t) be 1 for te|d,t, — o], zero for
t¢(0,¢) and linear in the intervals [0, 6] and [¢, — 4, £]. Next n(t) =
%).(t) is defined as in the proof of Theorem 1 as an approximate delta-
function,

For any C=-function v with values in V with compact support,
we have

0= r d(Av, v) = (A", B> + 2Re {Av, V"> .

Putting v = 9« (fu) and noting that
v =9'x0u = nx(0'u) + px(0u),
we have

0 = {A'(p*0u), n*0u)
(3.3) + 2Re{p*0Awu, nx0u’)y + 2Re {p* 0 Au, = 0'u)
+ 2Re A= 0u) — px0Au, 7’ x0u)y .

‘We shall examine each term in (3.8) separately as 6 = 6;— 0, and 7
is fixed. (The idea of first letting 6 — 0 is due to Torelli [7].)

Since 7'’ e L*(R) and § — 0, in LY(R) as ¢ —0, we have 'V xfu—
70 in L=(R, V) strongly (7 = 0,1). Therefore, as 6 — 0, § may be
replaced by 6, in the first and last terms in (3.3). The same is true
of the second term in view of Lebesgue’s convergence theorem because
we L0, T; W) and Aue L0, T; W').

As for the third term in (3.3), we note that yxn=[(¢ — 0,)Au] —0
in L?(R, V") strongly while

Slﬁ'(t)idt:2.

Thus {n*(0 — 6,)Au, nx6’'uy— 0 as 6 — 0. On the other hand, since
((p*n*0,Au)(t), w(t)) is a continuous function of ¢, <{p*y*0,Au, 0'u)
tends to

(=9 *0,Au)(0), u(0)) — ((n*n*0,Au(t,), u(t,)) .

Hence the third term in (8.3) also tends to the latter expression.
Writing F' = Au, we conclude that

* Thus in (8.2), we are referring to the weakly continuous function.
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g 0 = (A (n*0,u), px0u)y + 2Re {<nx0.F, n*0u")
(3.4) + ((x7*6,Au)(0), u(0)) — (71 *0.Au)(ty), u(t;))
l + (A 0,u) — nx0,Au, n'*0.u)} .

We now consider the convergence of each term in (3.4) separately
as ¢ =0 (p =17.). Since p*0u— 0u strongly in L*R, V), the first
term tends to {A4'6u, 6,wy. By a standard argument using the as-
sumption that translations in ¢ are continuous in Z, pxnx0u’ — 0,u'
strongly in Z. Thus the second term tends to 2Re<{6,F, 6,u’>. Now
if we let p = o, = p.x7., then 0 = p(t) = O(¢™), the support of p is
an interval of length O(¢), and

Sjp(t)dt = —;—Siwp(t)dt = % .

Therefore for sufficiently small e,
(4wt — - (Au)(t), u(t)

= S:op(t)((A“)(to — 1) — (Au)(t,), ult,)dt .

Since the inner product within this integral is a continuous function
of £, we conclude that as ¢ — 0,

<«a*mAaxuxuuo>—»§4Aaouuo,u@»).

In a similar way we find the same result with ¢, replaced by 0.
The proof is terminated once we show that the last term in (3.4)
tends to zero with ¢. Since

|17 1t = 0,
{eni* v} is bounded in L*(R, V), where we have put v = 6,u. But for
fixed ¢, ek (e, xv) = e(n.* 9l *v) tends to zero strongly in LX(R, V) as
e— 0, It follows that
enekv—0 strongly in L*(R, V) .
On the other hand,
[A67.x0) — 7% (A0)1(6) = ([A®) — At — 9pls)o(t — 9)ds .
Therefore
| Aexv) — e (AV) |lz20y = O [| 9e* 2 ||225) = O(8)

Thus the last term in (8.4) tends to zero with e,
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COROLLARY 3.1. (A(®)u(t), u(t)) is a continuous function of t.

THEOREM 3.2. Assume in addition that (¢ > 0, N real):
(3.5) (A@)yv,v) + M|vx =c|vly

Jor all ve V, where X 1s some Banach space containing both V and
W with continuous inclusions. Then the function w in Theorem
3.1 1s strongly continuous with values in V.

Proof. Suppose t,—t in [0, T]. Then |u(t,) — w(t)|x— 0 since
both % and «’ lie in L0, T; X). By Corollary 3.1,

(A(D)u(t,), u(t,) — (A@)u(t), u?)) .
Therefore, by the weak continuity
(AQ@)(u(t,) — ult)), w(t,) — u(t)) — 0.
By (3.5), |u(t,) — u(t) |, — 0.

THEOREM 3.3, In Theorem 3.2 the assumption wue L=(0, T;V)
can be weakened to uwe L0, T; V).

Proof. We begin with identity (3.3), but fix 4 =4, and let ¢—0
first. By arguments similar to those following (3.4), (cf. [4, 5]), we
find

(3.6) 0 = <0Au, Oud> + 2Re<OF, 0u'> + 2Re {0Au, 6'v) .

Next, as 6 — 0, the first two terms in (3.6) approach the right hand
side of (3.2) with ¢ = ¢,, However, the third term may not converge
since the function ¢ — (A(¢t)u(t), u(t)) is not known to be continuous.
We alter the definition of 4 as follows: 6(¢) = 6,(t) is 1 in [¢, + 0, t, — 0],
zero outside of (¢, t,) and otherwise linear, where 0 < ¢, < ¢, < T. Then
letting 6 — 0 in (8.4) gives for almost every t, and ¢,

(A(E)u(ty), ult,)) — (At)ult,), u(t,))
- S“){(A'u, ) + 2Re (Au, u)} .
In particular, the function ¢— (A(t)u(t), u(t)) is essentially bounded.

From (3.5) it follows that we L=(0, T; V) and so the situation is
reduced to that of Theorem 3.2.

4. Solutions of hyperbolic equations. The assumptions are
the same as in §3 except that we are also given a Hilbert space H
containing V, where V is dense in H and the inclusion is continuous;
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H and W are contained in some fixed linear space. The analogue to
Theorem 3.1 is:

THEOREM 4.1. Let uec L=(0, T; V), w' e ZN L0, T; H) and
(4.1) w’' + Auw = FeZ' + L'0, T; H)
where w = du/dt, w' = d*u/dt*. Then for every tc[0, T]
[6'(t) [ + (A@)u(t), w(t)) — [w'(0) [z — (A(0)u(0), %(0)

(4.2) _ S:(A’u’ u) + 2Re S:(F, w) .

Proof. By Corollary 2.1, ueC,(0, T; V). By (4.1),
weZ + C, 0, T; VYC L', T; W + V")

Thus Corollary 2.1 may be applied again to infer that w' € C,(0, T; H).
Using the notation ¢ = 6, and 7 = 7. as before, we have

0 = 2Re{nx 0w, '« Ou’)
(4.3) = 2Re {{px 0w, pxOu'")
+ <p* (0 — 0w, px0'uy + <px O, nx0'u'D} .

Since ne L=(R), # — 6, in L(R) and ¢ is bounded in L'(E) as 0—0
in addition to the fact that w’e C,(0, T; H), the last term in (4.3)
tends to

(4.4) 2Re {((p 7% 0,u")(0), w(0) — ((*7*bou)(to), u'(to))}

and the next-to-last term tends to zero as 6— 0. Thus, if we add
(4.3) to (3.3) and let §— 0, we find that (3.4) holds except for the
addition of expression (4.4) to its right-hand side, where F'= w” + Au
now,

Next we let e — 0, Since

((eer 0ty — G (e, w)
= ("o, — &y — witd, wit)at
tends to zero with ¢, the terms (4.4) approach

| w'(0) [ — [w'(to) %

Thus, referring to the proof of Theorem 3.1, we find (4.2) (with ¢ = %,).

COROLLARY 4.1, |/(t) |% + (A@®)u(t), w(t)) is a continuous fumnc-
tion of L.
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THEOREM 4.2. Assume in addition that (3.5) holds for all
veV, with X = H, Then ueC0, T;V) and v € C,0, T; H).
Proof, If t,—t in [0, T] then
|/ (L) [ + (A@Q)u(t,), u(ta)) — [w'(0) i + (A)u(?), u(?)) .
Hence by the weak continuity,
|w'(Ea) — w(t) % + (A@)(u(t,) — u(t)), w(t,) — u(t) —0.
But since uwe C,(0, T; H) and in view of (3.5),
Tm (A@E)(u(t,) — u(®), u(t,) — ut) = e lim |u(t,) — u(@) 5 .
Hence |w/(t,) — w'(t) |z — 0 and |u(t,) — u(t) |y — 0.
THEOREM 4.3, In Theorem 4.2 the assumptions we L=(0,T; V)

and w'e L=(0, T; H) may be weakened to we LX0, T;V) and ¢
X0, T; H), if FeZ + LX0, T; H).

Proof. (cf. Theorem 3.3,) Letting ¢— 0 first, we have (3.6) but
with the additional term
2Re 0w, 6'u"> .
Then letting 6 — 0 we conclude that the function
t— W (@) 7 + (A@)u(?), u))
is essentially bounded. Since we C,(0, T; H), it follows that «' e L=
(0, T; H) and we L=(0, T; V).

REMARK, A slight variation of the proof shows that under the
same conditions,

PO w'(t) [z + (A)u(t), u(®)]
(4.5) — @(0)[| w'(0) |= + (A(0)u(0), u(0))]

= [[o(au, w) + @'(4n, w) + ¢ | [ + 29 Re (F, w)],

for 0 <t < T and any C’-function ¢ on [0, 7]
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