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In this paper we consider the location of the zeros of a
complex polynomial f(2) expressed as f(z) = >\7_, a:zpi(2) where
{px(z)} is a given sequence of polynomials of degree k& whose
zeros lie in a prescribed region E. The principal theorem
states that the zeros of f(z) are in the interior of a Jordan
curve S= {z; | F(2) | = Max (1, R)} where F' maps the complement
of F onto |z] > 1 and R is the positive root of the equation

oAk lag | tF — An|a, | t* =0, with 2, > 0 depending on FE
only, Several applications of this theorem are given. For
example; if {p.(z)} is a sequence of orthogonal polynomials on
a =2=Db, then we give an ellipse containing all the zeros of

S0 G Pr(R).

Previous results. An extensive mathematical literature deals
with the location of the zeros in the complex plane of a polynomial

(1) Jf@=a,+az+ -+ +ag"

with complex coefficients a;. Cauchy derived practical bounds for the
moduli of the zeros of (1) using the moduli of the coefficients a;. In
many investigations the polynomial (1) is not expressed as a linear
combination of the sequence {2z}, but as

(2) J(2) = by + bipi(2) + -+ + 0.pu(2)

where {p.(2)} is a given sequence of polynomials, Cauchy’s well known
result (Marden [2], Th, 27, 1) was generalized by Turan [4] in the case
where the expansion in (2) is the Hermite-expansion ¢** Si2_, b, (=)™,
He obtained upper bounds for the moduli of the imaginary parts of
the zeros, i.e., a “‘strip’” where all the zeros of (2) are located. Specht
[3], making use of the Christoffel-Darboux formula, extended these
results to other sequences of orthogonal polynomials. In our Theorem
1, we replace the “‘strip” with a bounded region, which will yield an
ellipse in the case where the {p,(z)} is a sequence of orthogonal poly-
nomials on a finite interval.

2. Cauchy type estimate. In the sequal we shall use the follow-
ing notations: Let E be a compact (infinite) set in the complex z-plane,
whose complement G is simply connected, w = F(z) the univalent
function which is defined on G and maps G conformally on D:|w| > 1
such that the point at infinity in the two planes correspond to each
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other and also preserves direction there. The function F(z) has the
expansion in the point at infinity

(3) w:F(z):Lz+co+clz“l+czz*2+---
T

where 7 is the transfinite diameter of E. If the boundary B of G is
a Jordan curve, then according to a well known theorem (see Cara-
théodory [1]) the function F(z) is continuous in the closure of G and
maps the boundary B one-to-one onto |w| = 1. We shall denote by
Cr the inverse image of the circle |F(z)| = R (R > 1).

With these notations we are able to state the following:

THEOREM 1. Let G be the complement of a finite domain E
whose boundary B is a Jordan curve. If & = {p.(2); E} is a sequence
of polynomials of exact degree r whose zeros are in E, then the
polynomial

(4) J@) = ap, + apy(z) + -+ -+ a,p.(2)

has its zeros in the closed interior of the Jordan curve S = {z; | F(z)| =
Max (1, R)}, where R is the (only) positive root of the equation

(5) )\'o[aol + )Vlla'llt + e 4 )\'n—llan—lltn_l— )“n!anitn: .
The N\, are positive and depend only on & and E.

Proof. The rational function (p,(2)/p,..(2)) has the expansion
in the neighborhood of the point at infinity:

(6) PAB) pat gt e (B 0).
Pr11(R)
Define
(7) 9.(z) = _P(2)_ F(zy.
Dri1(2)

Using (6) and (3) we obtain the following expansion for g, at z = co:
9.(2) = do + dzg™ + dz™? + .- (dy # 0) .

Hence ¢,(z) is analytic in the domain G and continuous in G U B.
With the aid of the maximum modulus theorem we obtain:

p2) | _

(®) 19| 5 Max | 2L Pe)| = Max | 22|

Pria(2)

()
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since | F(z)| =1 or B. From (7) and (8) we obtain the estimate

p.(2) m,
(%) | 225 = T for #eC
For r <mn
(10) 22 | _ | p.(2) [pm(Z) o | Paci(®) { R
Du(2) Dri(@) | | Drya(2) D.(2) | F(z) |*

Denote N\, =mm,., -+ m then for ze G

n—1y

(11) 0.(2) < Ay .
p.(2) | [ FR) "

Now, let {eG be a zero of the polynomial in (4), then

(12) | 2] = o] + [ [DO)] + 0 4 [@ass[ [ Pama(O) |

from which, after dividing by 2,.({) # 0 and using (11), we obtain
13) [a | FOI" =Nl o] + M| [FE) + » v + Nss | @ | [ Q) "

But this inequality implies that | F({)| # R, for R is the root of (5).
From the definition of Cj it follows that { is in the closed interior
of Cp. If {e FE then clearly { is in the interior of C,, hence all the
zeros of (4) lie in the closed interior of the Jordan curve

which proves the theorem.

Ag an application of this theorem, consider a sequence of poly-
nomials p,(z) with leading coefficient one and whose zeros (which we
assume lie in the interval [— 1, + 1}) separate each other, More
precisely: if z,,,, 2,,,, -+ -, 2,,, are the zeros of p.(z) and z,,, = — 1, 2,,,,, =
1, then each interval (z,,,, 244...), £ = 0,1, .-+, 7, contains exactly one
zero of 9,.:(2). The mapping function which maps the exterior of
[— 1, + 1] onto the exterior of the unit circle is given by

(14) w=Fz) =z + (& — 1)

where we take that branch of z + (2> — 1)¥* which becomes infinite at
z = co. The locus C; = {z; |w| = R} will be an ellipse with foci at
+ 1, — 1 and with semi axes (1/2)(R + R™), (1/2)(R — R™"). Now, if
R =2 + 3" then C; is the ellipse with major axis 4 and minor axis
2-3"2, The distance of any point u outside or on C, from the zeros
of p,(z) (r=1,2 -..) is greater than 1. Let u be such a point; then
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p,,.(u) . (u —_ zlvr)(“ "—' z2,'r) ct (u — %y <1-
Dy (%) (U — Ripgs) o0 (U — Zppirpr) -

’

(15)

for suppose that the minimum distance of w from z,,,, is attained at
zlc0,1'+ly i.e.,
(16) | % — Zyprsr | = Min {4 — 2,4, > 1.

1=k=sr+1
If we replace z,,. by 24.1,,.. when k =k, and z,,, by z,,,.. when k < k,
in (15), then the numerator is increased because the zeros are separated.
Using (16) we obtain

pr(u) < 1 é 1 .

(1 <
p1+1(u) I U — zk071'+1 |

If the interior of C,,; is our domain E in Theorem 1, then it follows
from (17) that all the A, satisfy 0 <X\, <1+ =0,1,2 --- and we
obtain the following:

THEOREM 2. Let {p,(2)} be a sequence of polynomials with leading
coeffictent 1. If all the zeros of p.(z) (r = 0,1,2, «++) lte tn [— 1, + 1]
and the zeros of p.2) and p,.(2) separate each other, then all the
zeros of the polynomial

(18) @) = 3 ap,(2)
are wn the ellipse

xZ y2 . o .
(19) R R + Ty 1/4 (=2 + iy)

where R = max (2 + 8% p) and p s the (only) positive root of
lay| +la |t 4+ a4+ o0 + e, |t —]a,]t" =0,

In particular, if the sequence {p.(?)} in Theorem 2 is a sequence
of orthogonal polynomials then the zeros of p,(z) and p,.,(2) separate
each other and we have, for example, the following:

CoROLLARY. If f(2) = S a,pn.(2) is a polynomial expounded in
Legendre polynomials p,(z), then all the zeros of f(z) are in the ellipse
as given in Theorem 2,

We will use Theorem 1 to prove a result, Theorem 3, which is
analogous to Pellet’s theorem (Marden [2], Th, 28, 1). Keeping the
notation of Theorem 1, define:
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PA(2) (r=0,1,2 «--)

(20) d{¥ = Max
Di(2)

zE€EB

then, as in (9)

D(2) a®
(21) }pk(z) = T for zeG.

With the aid of inequality (21) we prove:

THEOREM 3. Let E, G, B and {p.(?)} be as in Theorem 1. If for
a polymomial

(22) flz)y = Z”arp,(z) . a, %0 for some k, 0<k=mn
=0
the equation:

k— n
@9  HO =349 |a|t—dP et + 3 dPe,|t =

7=0 r=k+1
has two positive roots o and R* 1 < p < R, and if the only positive
root of

k=1
(24) > AP e |t —dif la, |t =0

r=0
18 greater or equal to 1, then f(2) has exactly k zeros in or on C,
and no zeros in the open ring Ext. C, N Int, Cp.

Proof. The region Ext.C,N Int.Cg, by assumption (o >1) is
contained in G, hence we will show that if {eG is a zero of (22
then { ¢ Ext. C, N Int. Cx. Because p,({) #+ 0 and 3, a.0.(0) = 0 we
have:

25 = Sa, | 28]
(25) |al_%1al 20
Using inequality (21) we obtain

n d(k)
26 o = Y [ —
(26) | | %IQI‘F@'H
and hence
@) H(FO|) = S d |a,| | FO

P | FQ L+ 3 o] [FOr 2 0.

1 If not all the a.(r < k) are zero, then the equation (23), according to the
Descartes rule of sign, has two positive roots or has no positive roots at all.
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This last inequality tells us that ¢ = |F({)| < p or t=]|F({)| > R,
because the function H(t) is negative only for p < ¢ < R, We have
shown that { ¢ C, when p <t < R i.e., { ¢ Ext, C, N Int. C;.

To complete the proof of Theorem 3 we have to show that the
closed interior of C, contains exactly k zeros. We will do it by using
a continuity argument. Define

(28) fz9) = Sap @) + 3 sapk)  O=s=1)

r=k+1

and the function

©9)  Hts) = SN dP |a,| ¢ — di¥ | ay | t* + Sy dsla, |t
=0 r=k+

H(t;s), if s =1, has two positive roots o(1) = p, R(1) = R. If s tends
to 0, the two roots p(s) and R(s) of (29) start to move; o(s) decreases
and R(s) increases, and according to the first part of this theorem,
Ext. C,,, N Int. Cy,, is always zero free, hence the number of zeros
N(s) in the closed interior C,,, (0 =s <1) is a constant call it N.
If s—0 then R(s) — oo and p(s) — 0* =1 by (24). But Theorem 1
applies to f(z;0) and H(t; 0). Consequently the number of zeros
in Cf is exactly k, i.e., N=Fk which completes the proof of
Theorem 3.

In the preceding theorems we obtained bounds for all the zeros
of (2) as function of all the coefficients a,. However, if we restrict
ourselves to p -+ 1 fixed coefficients and n — p arbitrary ones, are we
able to find some bounds for p zeros? In the case f(z) = S, a,%"
Van Vleck [5] proved that essentially there is only one case in which
bounds for p zeros are derivable, i.e., if the fixed coefficients are the
first p consecutive ones and any other one from the remaining set.
In other words, he showed that if one of the coefficients a,, a,, +--, ¢,_,
is arbitrary, then at least m — p -+ 1 zeros of 3}, a,2” may be made
arbitrarily large in modulus. Perhaps it is interesting to note that
this is the case in which the polynomial (2) is expressed with the aid
of the sequence p,(z) in Theorem 1. Suppose a, for some k(0<k=<p—1)
in f(z) = S»a,p,(z) is arbitrary. Let < > 1 be such that the distance
of C, from the origin is greater than a fixed large number 4. Choose
a, so large in modulus that the equation in (24) has a root greater
than 1 and also

(30) AP |a,| & < > dW |a,| Z7 .
=

But (30) implies that the equation H(t) = 0 in (23) has a root B > <#.
According to Theorem 8 n—k=n — p -+ 1 zeros 2,2z, +++, 2, of
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f(z) are in Ext, C;. Thus |z;| >0 for j=1,2,..-,n —k, because
Bxt, C, C Ext. C,.
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