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A Toeplitz operator is an operator with a matrix represen-
tation (@p_u)m,z=0 Where the «, are the Fourier coefficients of
a bounded function ¢. The operator may be considered as
acting on any of the Hardy spaces H,(1 < p < ) and it is
the purpose of this note to show that the spectrum of any
such operator is a connected set.

The Hardy space H,(1 <r = o) congists of those functions in
L,(— =, ©) whose Fourier coefficients corresponding to negative values
of the index all vanish, If fe L, (1 < p < «) with

f"‘ Z cneiné

n=-—co

then by a well-known theorem of M. Riesz the series

> e,et?

n=0

is the Fourier series of a function Pf belonging to L, (and so to H,),
and moreover

WAl = Ay 11

where A, is a constant depending only on p. Thus P is a bounded
projection from L, to H,.

(We use the following convention. When we speak of L, or H,
then we assume only 1= » = c; but when we speak of L, or H,
then we require 1 < p < co.)

Now let @€ L. We define the Toeplitz operator 7, on H, by

T.f = Plpf) .

Clearly 7T, is a bounded operator with norm at most A,|/@|l.. In a
previous paper [3] it was shown that for p = 2 the spectrum of T,
is connected for all @, The proof made use of a theorem of Helson
and Szego [2] which characterized those measures d¢ with the property
that P (restricted to the trigonometric polynomials) is bounded in the
norm of L,(dg). It is not at present known whether the analogue of
this theorem holds for p s+ 2, but we shall present here a new proof
which avoids using the Helson-Szego theorem and which holds for
arbitrary p.

Here is an outline of the proof. It suffices to show that if C is
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any simple closed curve in the complex plane which is disjoint from
o(T,), the spectrum of T,, then o(T,) lies entirely inside or entirely
outside C. For neC the equation T,f = Af -+ 1 has a solution f=
fre H, which can be shown to satisfy a differential equation whose
solution is

1
P —

A

(1) fr= e (| P ap)

where )\, is a fixed point of C. (This fact, in a somewhat different
setting, was observed by Atkinson [1] and used by him to obtain very
simply the solution of a large class of operator equations.) If one
takes the path of integration to be the entire curve C then it can be
shown very easily from (1) that R(p), the essential range of ¢, lies
either entirely inside or entirely outside C. In the latter case, say,
(1) shows how to continue f, analytically to the inside of C. Now
there is an explicit formula which gives the solution of the equation

(2) T =\ + k

in terms of f, for n¢¢(7,). But then this formula shows us how to
continue % = 4, analytically to the inside of C and this econtinuation
will provide the unique solution of (2). Thus we shall have shown
that o(T,) lies entirely outside C.

The f, we have been speaking about is an analytic function of
» whose values are measurable functions, and we must develop a little
bit of theory of such things.

Let 2 be an open set in the complex plane and .assume that for
each M€ Q there is associated a measurable function f, on a finite
measure space ., (All functions considered will tacitly be assumed
to be finite a.e.) We shall say that f is analytic in Q if for each
o € 2 there is a dise

D(no, 0) = {n: [N — N < 6}

and a sequence a,, a,, +-- of measurable functions such that for all
» e D\, 0) the series

(3) a0 =)

converges a.e. to f,. we shall say that f is L,-analytic if each a,
belongs to L, and for each e D(\, ) the series (3) converges to f
in the norm of L,.

LeMMA 1. If f is L, analytic then it is analytic.

Proof. Since L,-analyticity implies L,-analyticity we may assume
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r =1, It suffices to show that if (3) converges L, for all x € D(\,, 6)
then it converges a.e. for all A € D(\,, ). Suppose 6, < 6. Then there
ig a constant A such that || a, ||, < Adé7 for all n., Let §, < 6,. Then
if we set

B, ={0:]a,0)] = 67"}
we have
oz | |a0)|d6 = 5| B,
where | E,| denotes the measure of E,. Thus

B, < A(%>_"

and so 3| E,| < c. This shows that almost all # belong to only
finitely many F,; that is, for almost all 4§ we have |a,(0)| < 65" for
sufficiently large n. Therefore for almost all § the series (3) converges
for each »€ D(n, 6,). But 8, was an arbitrary number smaller than
5. If we take for 0, successively (1 — k™ )o(k = 1,2, ---) we deduce
that for almost all ¢ the series (3) converges for all x e D(\,, d).

The next lemma is a partial converse of Lemma 1.

LemMMA 2. Suppose f is analytic tn 2. Then for any € >0
there is o set E. whose complement in E has measure at most
such that f, when restricted to K., s L.-analytic in Q.

)

Proof. First consider a disc D(\,, 6) throughout which (3) con-
verges a.e, to fi. Then the series

(4) Sa(g)

converges a.e. and so by Egoroff’s theorem there is a set F. whose
complement has measure at most ¢ on which (4) converges uniformly.
There is a constant M such that for all #e F. and all » we have

(5) |a,(0)| = (-g-)M

Now let \, be any point in the dise D(\n,, 6/2). Then (5) shows that
for

xeD(xl,g—|x1~x0|)

the series (3), which converges a.e. to f,, may be rearranged into a
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power series in A — A\, which converges uniformly for f¢ F.. This
shows that f restricted to F, is L.-analytic in D(\,, 6/2).

Now we can find a countable set of dises D(\;,6,) (7 =1,2,--+)
of the type just considered and such that

1 d;
Q= U D, (%).
i=1 2

For each j there is a set F,; whose complement has measure at most
2-%¢ and such that f restricted to F.,; is L.-analytic in

But then

has complement of measure at most ¢ and f restricted to E, is Le.-
analytic throughout 2,

LEMMA 8. Let C be a simple closed curve contained in a simply

conmected open set Q. Suppose f is analytic in 2 and

sup || full, = M < eo .
uneo

Then f 1s L.-analytic inside C and for all N inside C we have

1l = M.

Proof, Let A\, be inside C and let 6 be so small that D(A, d) is
entirely inside C and

oo

fr= Z ano" - >\'o)n

n=0

a.e. for each Ae D(\, d). The beginning of the proof of Lemma 2
showed that if we restrict ourselves to an appropriate set E. with
complement of measure at most ¢, the series in (6) converges uniformly
as long as e D(\,, 6/2). Take any ge L.. Then we can conclude

SEengda =3 (SE a%gd0><x — M)” Ne D(xo, _25_) ,

7=0

It follows from the Cauchy inequalities that

lg angd0|§<—5—>_n max
B, 2 IA—Agl=8/2

S f)\gdﬁ‘ .
EE
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But since f restricted to E, is L.-analytic in 2,

SE Jrgdo

is a complex-valued analytic function in 2, and so for any )\ inside
C we have

(7) | rodo| = max | s.0a0| = prig1,,
B, [2=14 B,

where s = »/(r — 1). Consequently
5 —n
< (L
[ oo < (2 st

for all ge L., and so

(v = (3)

Since ¢ > 0 was arbitrary it follows that

laull- =(5) "5,

and so the series in (6) converges in L, for each e D(x,, 6/2). Thus
f is L,-analytic inside Q. Finally (7), with E. replaced by E, gives
£l = M.

We shall have to deal later with the derivative of analytic func-
tion, If f is analytic in 2 we define f’ as follows: if f, is given a.e.
as the sum of the series (3) for M e D(\,, d) then we set

fi=Sina,00 — A" ne Dln, d) .
n=0
We leave as exercises for the reader the verification that for each
e D(n, 8) the above series converges a.e. and that if
A€ D(n, 6,) N D(\y, 0))

then the two possible interpretations of f{ agree a.e., so that f, is
well defined and, of course, analytic. We also leave it to the reader
to show that if f is L,-analytic then the same is true of f’.

Let us return to our Toeplitz operators T, acting on L,. We
denote by o(T,) the resolvent set of T, that is, the complement of
o(T,). Recall that the essential range of ¢ is denoted by E(p).

LEmMA 4. o(T,) contains R(p).

Proof. Suppose ne o(T,). Then for some constant A we have
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1 Pl@ =M 1= Allfll

for all fe H,, so with another constant 4" we have

@ =M1l = A 1Sl

If g is an arbitrary trigometric polynomial we shall have f = ei"ge H,

for some m. Then
(@ —Ne"gll, = A" [ ey,

and of course this is exactly

e —Nglle = A"l g1, .

It follows that | — N | = A’ almost everywhere.

LeMMmA 5. If xepo(T,) then T ,_,-1, as an operator on
H/(q = p/p — 1), ts invertible.

Proof. The adjoint of T, — \I is the operator T,= acting on
H,. (Here we use the identification of H, with H; obtained by

identifying the function g¢ge H, with the linear functional f— S fgde
on H,.) Therefore T,= is invertible on H,. Let

% = exp (— 2Plog|p — \))

Then ¢|p — N> = u# for some constant ¢, and since by Lemma 4
| —N|""e L., both w and ™’ belong to H.. For ge H, we have

(@ — N)7'g = @ — Y
= uPp — \Nug + 0¥ ve HP

(H? denotes the H, functions with mean zero) and so
¢P(p — N9 = P(@Pp — \ug) .

This shows that

(8) ¢Tyryr =TT T, .

We have seen that 75— is invertible on H,. Since uw'e H, the
same is true of T,. Since similarly T, is invertible on H,, its adjoint
T is invertible on H,. Thus the three operators on the right of (8)
are all invertible and the lemma is established.

For any ne p(T,) we shall denote by f,, 9, the unique solutions
of
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(9) T((o—mfx =1, Ty y19,=1

in H, H, respectively. The existence and uniqueness of g, are
guaranteed by Lemma 5.

In the following lemma we shall be integrating P(p — p)~* over
a path lying in o(T,). It follows from Lemma 4 that (p — p)~' is
L,-continuous on this path and consequently the same is true of
P{(p — p)7'. Therefore there is no difficulty making sense of the in-
tegral. We shall interpret it as a weak integral.

LEMMA 6. Let I" be a rectifiable curve lying in o(T,) and hav-
ing initial and terminal points N\, N respectively. Then

(10) fo=Fpexo{| Plo — mdn},
(11) gr = G, €XD {—grP&p - ﬁ)”ldp} )

Proof. It follows from (9) that
(12) (@ —MSfi=1+a, uye H?
(13) (p—N"g =147, wveH?.
Therefore figr = 1 + w where we HP°. But since f,9, € H, we conclude
(14) frgn=1.

Now f. is L,-analytic since, as is well-known, (7, — \I)™' is
analytic in o(T,). Therefore %, is also L,-analytic and differentiation
of both sides of (12) gives

(@ — ML — fn= Uy .

If we multiply both sides of this identity by (@ — \)7'g, and use (13)
and (14) we obtain

(15) (P —N7= g fl— 1+ 5)u .

It is easy to see that if A, is L,-analytic and %, belongs to a certain
closed subspace of L, for all x then 4} belongs to the same subspace.
Therefore f; belongs to H, and so g,fic H,. Similarly #)c H} and
so 1+ 70, H°. Consequently (15) gives

P(p — N7 = g, S
and so by (14)
(16) SL=0HPle—N".
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Now consider a disc D()\,, 6) inside of which we have series
representations

f)\ - 2‘) an(k’ - ’\*O)n

Plp — N7 = % b.(n — X)) .

For each :ne D(\, d) the two series converge a.e. and this implies
that for all 4 not belonging to some null set N the series converge
for all xe D(\,, 0). Let us write U0, ), V (0, N) for the sums of the
two series; U and V are defined for 6¢ N, n€ D(N\,, 6). The equation
(16) is equivalent to the statement that for each n = 0 the identity

(n '_l— 1)an+l - é ambn—m
m=0

holds almost everywhere. It follows that for all § not belonging to
gsome null set N, the above identities hold for all #n, Thusif ¢ NU N,

we have

d _
S U0 =T, V6,0

for all xe D(\,, §). This implies that for any rectifiable curve I°
which lies in D(\,, 6) and has initial point )\, and terminal point X\

U0, %) = U(0, ;) exp {Sl Vo, /,c}d‘u} .

Since this holds for all ¢ N U N, and since for each \, u
fao=U,N), Plp — )7 = V{0, 11) ae.

we conclude that (10) holds, at least for curves I" of this special
type. But any rectifiable curve lying in o(7,) may be obtained by
joining finitely many curves of the special type, so (10) holds in
general. Formula (11) is an immediate consequence of (10) and (14).

THEOREM. o(T,) is connected.

Proof. It suffices to show that if C is a simple closed curve in
o(T,) the o(T,) is either entirely inside or entirely outside C. Let
us apply Lemma 6 with /" = C and observe that by (14) £, is almost
nowhere zero. Then we obtain

exp {SOP(w - #)”161#} =1.
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Thus if

(0) — jl gD(}ﬁ) ll'lSId.e C
(0 @if) outside C

we have ¢¥? =1, Therefore P® is a real (in fact integer) valued
H, function and so is constant. But since @ is real valued this
implies that @ is itself constant, and so R(¢) lies entirely inside or
entirely outside C. Assume the latter. The other case is quite similar,
except that the point at infinity is involved; but this is handled in
the usual way.

Let 2 be a simply connected open set which contains C and such
that any point of 2 not inside C belongs to o(7,). Choose € C,
keep it fixed, and use (10) and (11) to define f, and g, for all ne Q.
Here I is always taken to lie in £2. Notice that

| Pl — g

is independent of I" (since 2 is simply connected and P(p — p)~" is
L,-analytic for # in Q) and represents an L,-analytic function of \.
Therefore fy and g, are analytic throughout 2 and by Lemma 3 even L,-
analytic and L,-analytic respectively inside C. If hc H? then

g Fuhd0 = 0

whenever » € p(T,), since f, € H,. But since f, is L,-analytic through-
out £ this identity holds throughout 2, and so fye H, for all AeQ,
Similarly we have g,e H, for all xe Q. Moreover the identities (9)
and (14) which hold in o(T,) persist in 2.

We show now that 7, — M\ is invertible for each \ inside C.
Suppose he H, and (T, — \I)A = 0. Then

@ — e Hp .
Since, by (9),
(p — N7 € Hq

we deduce hg,€ HP. But since g, e H, we must have hg, = 0 and
so h = 0. We have shown that T, — \[ is one-one.

Next let ke H. be arbitrary and for »e o(T,) let &, e H, denote
the solution of

@an (T, —\Dhy=Fk .
Then
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(p — Ny =k + 1, lae Hy .
Multiplying both sides by (» — \)~'g, and using (13) we obtain
Iy = (p — N7k + (1 + 77&)@ .
Since g hy€ H, and (1 + vl e H® we conclude that
9l = Pl — N)7'onk .
Therefore
k)\ = f}\P((p —_— K)ﬂlg)\k .

Let this identity, which holds for »e o(T,), be used to define %4, for
re 2. Note that sinece k is bounded P(p — \)7'g,k is L,-analytic and
so %, is analytic., But since

sup Al = sup || (T, — XM 1 k],

REC
Lemma 3 tells us that %, is L,-analytic inside C and satisfies the
inequality
(18) [ 2xll, = sup [|[ (T, — AT KL,
rEC
there. By an argument already given A,c H, and satisfies (17) there.
Finally let & be an arbitrary function belonging to H,. Then

we can find a sequence of functions k, belonging to H. and satisfy-
ing ||k, — kl,—0. Let A,, denote the solution of

(T, — \Dh,,, =k, .
As n, m — o we have ||k, — k,||,—0, so by (18)
[ o = Tl — 0.
Then {%,,.} converges in L, to a function %,¢ H, and
(T, - \Dh,=Fk.
This completes the proof of the theorem.
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