Pacific Journal of Mathematics

TOEPLITZ OPERATORS ON H_p

HAROLD WIDOM

Vol. 19, No. 3

July 1966

TOEPLITZ OPERATORS ON H_{p}

HAROLD WIDOM

A Toeplitz operator is an operator with a matrix representation $(\alpha_{m-n})_{m,n=0}^{\infty}$ where the α_n are the Fourier coefficients of a bounded function φ . The operator may be considered as acting on any of the Hardy spaces $H_p(1 and it is$ the purpose of this note to show that the spectrum of anysuch operator is a connected set.

The Hardy space $H_r(1 \le r \le \infty)$ consists of those functions in $L_r(-\pi, \pi)$ whose Fourier coefficients corresponding to negative values of the index all vanish. If $f \in L_p(1 with$

$$f \sim \sum_{n=-\infty}^{\infty} c_n e^{in\theta}$$

then by a well-known theorem of M. Riesz the series

$$\sum_{n=0}^{\infty} c_n e^{in\theta}$$

is the Fourier series of a function Pf belonging to L_p (and so to H_p), and moreover

$$||Pf||_p \leq A_p ||f||_p$$

where A_p is a constant depending only on p. Thus P is a bounded projection from L_p to H_p .

(We use the following convention. When we speak of L_r or H_r then we assume only $1 \leq r \leq \infty$; but when we speak of L_p or H_p then we require 1 .)

Now let $\varphi \in L_{\infty}$. We define the Toeplitz operator T_{φ} on H_p by

$$T_{\varphi}f = P(\varphi f)$$
 .

Clearly T_{φ} is a bounded operator with norm at most $A_p || \varphi ||_{\infty}$. In a previous paper [3] it was shown that for p = 2 the spectrum of T_{φ} is connected for all φ . The proof made use of a theorem of Helson and Szegö [2] which characterized those measures $d\mu$ with the property that P (restricted to the trigonometric polynomials) is bounded in the norm of $L_{\mathbb{R}}(d\mu)$. It is not at present known whether the analogue of this theorem holds for $p \neq 2$, but we shall present here a new proof which avoids using the Helson-Szegö theorem and which holds for arbitrary p.

Here is an outline of the proof. It suffices to show that if C is

any simple closed curve in the complex plane which is disjoint from $\sigma(T_{\varphi})$, the spectrum of T_{φ} , then $\sigma(T_{\varphi})$ lies entirely inside or entirely outside C. For $\lambda \in C$ the equation $T_{\varphi}f = \lambda f + 1$ has a solution $f = f_{\lambda} \in H_{p}$ which can be shown to satisfy a differential equation whose solution is

(1)
$$f_{\lambda} = f_{\lambda_0} \exp\left(\int_{\lambda_0}^{\lambda} P \frac{1}{\varphi - \mu} d\mu\right)$$

where λ_0 is a fixed point of *C*. (This fact, in a somewhat different setting, was observed by Atkinson [1] and used by him to obtain very simply the solution of a large class of operator equations.) If one takes the path of integration to be the entire curve *C* then it can be shown very easily from (1) that $R(\varphi)$, the essential range of φ , lies either entirely inside or entirely outside *C*. In the latter case, say, (1) shows how to continue f_{λ} analytically to the inside of *C*. Now there is an explicit formula which gives the solution of the equation

(2)
$$T_{\varphi}h = \lambda h + k$$

in terms of f_{λ} for $\lambda \notin \sigma(T_{\varphi})$. But then this formula shows us how to continue $h = h_{\lambda}$ analytically to the inside of C and this continuation will provide the unique solution of (2). Thus we shall have shown that $\sigma(T_{\varphi})$ lies entirely outside C.

The f_{λ} we have been speaking about is an analytic function of λ whose values are measurable functions, and we must develop a little bit of theory of such things.

Let Ω be an open set in the complex plane and assume that for each $\lambda \in \Omega$ there is associated a measurable function f_{λ} on a finite measure space E. (All functions considered will tacitly be assumed to be finite a.e.) We shall say that f is analytic in Ω if for each $\lambda_0 \in \Omega$ there is a disc

$$D(\lambda_0, \, \delta) = \{ \lambda : \, | \, \lambda - \lambda_0 \, | < \delta \}$$

and a sequence a_0, a_1, \cdots of measurable functions such that for all $\lambda \in D(\lambda_0, \delta)$ the series

(3)
$$\sum_{n=0}^{\infty} a_n (\lambda - \lambda_0)^n$$

converges a.e. to f_{λ} . we shall say that f is L_r -analytic if each a_n belongs to L_r and for each $\lambda \in D(\lambda_0, \delta)$ the series (3) converges to f_{λ} in the norm of L_r .

LEMMA 1. If f is L_r analytic then it is analytic.

Proof. Since L_r -analyticity implies L_1 -analyticity we may assume

r = 1. It suffices to show that if (3) converges L_1 for all $\lambda \in D(\lambda_0, \delta)$ then it converges a.e. for all $\lambda \in D(\lambda_0, \delta)$. Suppose $\delta_1 < \delta$. Then there is a constant A such that $|| a_n ||_1 \leq A \delta_1^{-n}$ for all n. Let $\delta_2 < \delta_1$. Then if we set

$$E_n = \{\theta \colon |a_n(\theta)| \ge \delta_2^{-n}\}$$

we have

$$A\delta_1^{-n} \ge \int_{E_n} |a_n(heta)| d heta \ge \delta_2^{-n} |E_n|$$
 ,

where $|E_n|$ denotes the measure of E_n . Thus

$$|E_n| \leq A \left(rac{\delta_1}{\delta_2}
ight)^{-n}$$

and so $\sum |E_n| < \infty$. This shows that almost all θ belong to only finitely many E_n ; that is, for almost all θ we have $|a_n(\theta)| < \delta_2^{-n}$ for sufficiently large *n*. Therefore for almost all θ the series (3) converges for each $\lambda \in D(\lambda_0, \delta_2)$. But δ_2 was an arbitrary number smaller than δ . If we take for δ_2 successively $(1 - k^{-1})\delta(k = 1, 2, \cdots)$ we deduce that for almost all θ the series (3) converges for all $\lambda \in D(\lambda_0, \delta)$.

The next lemma is a partial converse of Lemma 1.

LEMMA 2. Suppose f is analytic in Ω . Then for any $\varepsilon > 0$ there is a set E_{ε} whose complement in E has measure at most ε such that f, when restricted to E_{ε} , is L_{∞} -analytic in Ω .

Proof. First consider a disc $D(\lambda_0, \delta)$ throughout which (3) converges a.e. to f_{λ} . Then the series

(4)
$$\sum_{n=0}^{\infty} a_n \left(\frac{\delta}{2}\right)^n$$

converges a.e. and so by Egoroff's theorem there is a set F_{ε} whose complement has measure at most ε on which (4) converges uniformly. There is a constant M such that for all $\theta \in F_{\varepsilon}$ and all n we have

$$(5) |a_n(heta)| \leq \left(rac{\delta}{2}
ight)^{-n}M$$

Now let λ_1 be any point in the disc $D(\lambda_0, \delta/2)$. Then (5) shows that for

$$\lambda \in D\!\!\left(\lambda_1, rac{\delta}{2} - |\lambda_1 - \lambda_0|
ight)$$

the series (3), which converges a.e. to f_{λ} , may be rearranged into a

power series in $\lambda - \lambda_1$ which converges uniformly for $\theta \in F_{\varepsilon}$. This shows that f restricted to F_{ε} is L_{∞} -analytic in $D(\lambda_0, \delta/2)$.

Now we can find a countable set of discs $D(\lambda_j, \delta_j)$ $(j = 1, 2, \cdots)$ of the type just considered and such that

$$arOmega = igcup_{j=1}^{\infty} D(\lambda_j, \left(rac{\delta_j}{2}
ight)$$
 .

For each j there is a set $F_{\varepsilon,j}$ whose complement has measure at most $2^{-j}\varepsilon$ and such that f restricted to $F_{\varepsilon,j}$ is L_{∞} -analytic in

$$D\left(\lambda_j, \frac{\delta_j}{2}\right)$$
.

But then

$$E_{\epsilon}= igcap_{j=1}^{\infty} F_{\epsilon,j}$$

has complement of measure at most ε and f restricted to E_{ε} is L_{∞} analytic throughout Ω .

LEMMA 3. Let C be a simple closed curve contained in a simply connected open set Ω . Suppose f is analytic in Ω and

$$\sup_{\mu\in\sigma}||f_{\mu}||_{r}=M<\infty$$
 .

Then f is L_r -analytic inside C and for all λ inside C we have

 $||f_{\lambda}||_{r} \leq M.$

Proof. Let λ_0 be inside C and let δ be so small that $D(\lambda_0, \delta)$ is entirely inside C and

$$f_{\lambda} = \sum_{n=0}^{\infty} a_n (\lambda - \lambda_0)^n$$

a.e. for each $\lambda \in D(\lambda_0, \delta)$. The beginning of the proof of Lemma 2 showed that if we restrict ourselves to an appropriate set E_{ϵ} , with complement of measure at most ϵ , the series in (6) converges uniformly as long as $\lambda \in D(\lambda_0, \delta/2)$. Take any $g \in L_{\infty}$. Then we can conclude

It follows from the Cauchy inequalities that

$$\left|\int_{E_{\varepsilon}}a_{n}gd heta
ight|\leq\left(rac{\delta}{2}
ight)^{-n}\max_{|\lambda-\lambda_{0}|=\delta/2}\left|\int_{E_{\varepsilon}}f_{\lambda}gd heta
ight|.$$

But since f restricted to E_{ε} is L_{∞} -analytic in Ω ,

$${\displaystyle\int_{E_{\varepsilon}}} f_{\lambda}gd\theta$$

is a complex-valued analytic function in \varOmega , and so for any λ inside C we have

(7)
$$\left| \int_{E_{\varepsilon}} f_{\lambda}g d\theta \right| \leq \max_{\mu \in \sigma} \left| \int_{E_{\varepsilon}} f_{\mu}g d\theta \right| \leq M ||g||_{s},$$

where s = r/(r-1). Consequently

$$\left|\int_{E_{arepsilon}}a_{n}gd heta
ight|\leq\left(rac{\delta}{2}
ight)^{-n}M\,||\,g\,||_{s}$$

for all $g \in L_{\infty}$, and so

$$\left\{ \int_{B_{\varepsilon}} |a_n|^r d\theta
ight\}^{1/r} \leq \left(rac{\delta}{2}
ight)^{-n} M$$
 .

Since $\varepsilon > 0$ was arbitrary it follows that

$$||a_n||_r \leq \left(\frac{\delta}{2}\right)^{-n} M$$
 ,

and so the series in (6) converges in L_r for each $\lambda \in D(\lambda_0, \delta/2)$. Thus f is L_r -analytic inside Ω . Finally (7), with E_{ϵ} replaced by E, gives $||f_{\lambda}||_r \leq M$.

We shall have to deal later with the derivative of analytic function. If f is analytic in Ω we define f' as follows: if f_{λ} is given a.e. as the sum of the series (3) for $\lambda \in D(\lambda_0, \delta)$ then we set

$$f_{\lambda}' = \sum_{n=0}^{\infty} n a_n (\lambda - \lambda_0)^{n-1} \qquad \lambda \in D(\lambda_0, \, \delta) \; .$$

We leave as exercises for the reader the verification that for each $\lambda \in D(\lambda_0, \delta)$ the above series converges a.e. and that if

$$\lambda \in D(\lambda_0, \, \delta_0) \, \cap \, D(\lambda_1, \, \delta_1)$$

then the two possible interpretations of f'_{λ} agree a.e., so that f'_{λ} is well defined and, of course, analytic. We also leave it to the reader to show that if f is L_r -analytic then the same is true of f'.

Let us return to our Toeplitz operators T_{φ} acting on L_{p} . We denote by $\rho(T_{\varphi})$ the resolvent set of T_{φ} , that is, the complement of $\sigma(T_{\varphi})$. Recall that the essential range of φ is denoted by $R(\varphi)$.

LEMMA 4. $\sigma(T_{\varphi})$ contains $R(\varphi)$.

Proof. Suppose $\lambda \in \rho(T_{\varphi})$. Then for some constant A we have

$$|| P(\varphi - \lambda)f ||_{p} \ge A ||f||_{p}$$

for all $f \in H_p$, so with another constant A' we have

$$||(\varphi - \lambda)f||_p \ge A' ||f||_p.$$

If g is an arbitrary trigometric polynomial we shall have $f = e^{im\theta}g \in H_p$ for some m. Then

$$||\,(arphi-\lambda)e^{i\,m heta}g\,||_{p}\geq A^{\prime}\,||\,e^{i\,m heta}g\,||_{p}$$

and of course this is exactly

$$||(arphi-\lambda)g||_p \geq A' ||g||_p$$
 .

It follows that $|\varphi - \lambda| \ge A'$ almost everywhere.

LEMMA 5. If $\lambda \in \rho(T_{\varphi})$ then $T_{(\varphi-\lambda)^{-1}}$, as an operator on $H_q(q=p/p-1)$, is invertible.

Proof. The adjoint of $T_{\varphi} - \lambda I$ is the operator $T_{\overline{\varphi}-\lambda}$ acting on H_q . (Here we use the identification of H_q with H_p^* obtained by identifying the function $g \in H_q$ with the linear functional $f \to \int f \overline{g} d\theta$ on H_p .) Therefore $T_{\overline{\varphi}-\lambda}$ is invertible on H_q . Let

$$u = \exp\left(- \, 2P \log | \, arphi - \lambda \, |
ight)$$

Then $c |\varphi - \lambda|^{-2} = u\overline{u}$ for some constant c, and since by Lemma 4 $|\varphi - \lambda|^{-1} \in L_{\infty}$ both u and u^{-1} belong to H_{∞} . For $g \in H_q$ we have

$$egin{aligned} c(arphi-\lambda)^{-1}g &= \overline{arphi-\lambda}uar{u}g \ &= ar{u}P\overline{arphi-\lambda}ug + ar{u}ar{v} & v\in H_q^\circ \end{aligned}$$

 $(H_r^{\circ}$ denotes the H_r functions with mean zero) and so

$$cP(arphi-\lambda)^{{\scriptscriptstyle -1}}g=P(ar{u}P\overline{arphi-\lambda}ug)$$
 .

This shows that

$$(8) c T_{(\varphi-\lambda)^{-1}} = T_{\overline{u}} T_{\overline{\varphi-\lambda}} T_{u} .$$

We have seen that $T_{\overline{\varphi-\lambda}}$ is invertible on H_q . Since $u^{-1} \in H_{\infty}$ the same is true of T_u . Since similarly T_u is invertible on H_p , its adjoint $T_{\overline{u}}$ is invertible on H_q . Thus the three operators on the right of (8) are all invertible and the lemma is established.

For any $\lambda \in \rho(T_{\varphi})$ we shall denote by f_{λ}, g_{λ} the unique solutions of

(9)
$$T_{(\varphi-\lambda)}f_{\lambda} = 1, \ T_{(\varphi-\lambda)}g_{\lambda} = 1$$

in H_p , H_q respectively. The existence and uniqueness of g_{λ} are guaranteed by Lemma 5.

In the following lemma we shall be integrating $P(\varphi - \mu)^{-1}$ over a path lying in $\rho(T_{\varphi})$. It follows from Lemma 4 that $(\varphi - \mu)^{-1}$ is L_p -continuous on this path and consequently the same is true of $P(\varphi - \mu)^{-1}$. Therefore there is no difficulty making sense of the integral. We shall interpret it as a weak integral.

LEMMA 6. Let Γ be a rectifiable curve lying in $\rho(T_{\varphi})$ and having initial and terminal points λ_0 , λ respectively. Then

(10)
$$f_{\lambda} = f_{\lambda_0} \exp\left\{\int_{\Gamma} P(\varphi - \mu)^{-1} d\mu\right\},$$

(11)
$$g_{\lambda} = g_{\lambda_0} \exp\left\{-\int_{\Gamma} P(\varphi - \mu)^{-1} d\mu\right\}.$$

Proof. It follows from (9) that

(12)
$$(\varphi - \lambda)f_{\lambda} = 1 + \bar{u}_{\lambda}$$
 $u_{\lambda} \in H_{p}^{\circ}$

(13)
$$(\varphi - \lambda)^{-1}g_{\lambda} = 1 + \overline{v}_{\lambda} \qquad v_{\lambda} \in H_{q}^{\circ}$$
.

Therefore $f_{\lambda}g_{\lambda} = 1 + \bar{w}$ where $w \in H_1^{\circ}$. But since $f_{\lambda}g_{\lambda} \in H_1$ we conclude

(14)
$$f_{\lambda}g_{\lambda}=1.$$

Now f_{λ} is L_p -analytic since, as is well-known, $(T_{\varphi} - \lambda I)^{-1}$ is analytic in $\rho(T_{\varphi})$. Therefore \bar{u}_{λ} is also L_p -analytic and differentiation of both sides of (12) gives

$$(\varphi - \lambda)f'_{\lambda} - f_{\lambda} = \bar{u}'_{\lambda}$$
.

If we multiply both sides of this identity by $(\varphi - \lambda)^{-i}g_{\lambda}$ and use (13) and (14) we obtain

(15)
$$(\varphi - \lambda)^{-1} = g_{\lambda} f_{\lambda}' - (1 + \overline{v}_{\lambda}) \overline{u}_{\lambda}' .$$

It is easy to see that if h_{λ} is L_r -analytic and h_{λ} belongs to a certain closed subspace of L_r for all λ then h'_{λ} belongs to the same subspace. Therefore f'_{λ} belongs to H_p and so $g_{\lambda}f'_{\lambda} \in H_1$. Similarly $\overline{u}'_{\lambda} \in \overline{H_p^0}$ and so $(1 + \overline{v}_{\lambda})\overline{u}'_{\lambda} \in \overline{H_1^0}$. Consequently (15) gives

$$P(arphi-\lambda)^{-1}=g_{\lambda}f_{\lambda}'$$

and so by (14)

(16)
$$f'_{\lambda} = f_{\lambda} P(\varphi - \lambda)^{-1} .$$

Now consider a disc $D(\lambda_0, \delta)$ inside of which we have series representations

$$egin{aligned} &f_\lambda = \sum\limits_{n=0}^\infty a_n (\lambda-\lambda_0)^n \ &P(arphi-\lambda)^{-1} = \sum\limits_{n=0}^\infty b_n (\lambda-\lambda_0)^n \end{aligned}$$

For each $\lambda \in D(\lambda_0, \delta)$ the two series converge a.e. and this implies that for all θ not belonging to some null set N the series converge for all $\lambda \in D(\lambda_0, \delta)$. Let us write $U(\theta, \lambda)$, $V(\theta, \lambda)$ for the sums of the two series; U and V are defined for $\theta \notin N$, $\lambda \in D(\lambda_0, \delta)$. The equation (16) is equivalent to the statement that for each $n \ge 0$ the identity

$$(n+1)a_{n+1} = \sum_{m=0}^{n} a_{m}b_{n-m}$$

holds almost everywhere. It follows that for all θ not belonging to some null set N_1 the above identities hold for all n. Thus if $\theta \notin N \cup N_1$ we have

$$rac{\partial}{\partial\lambda}\, U(heta,\,\lambda) = \, U(heta,\,\lambda)\, V(heta,\,\lambda)$$

for all $\lambda \in D(\lambda_0, \delta)$. This implies that for any rectifiable curve Γ which lies in $D(\lambda_0, \delta)$ and has initial point λ_0 and terminal point λ

$$U(heta,\,\lambda)=\,U(heta,\,\lambda_{\scriptscriptstyle 0})\exp\left\{\int_{arGamma}\,V(heta,\,\mu)d\mu
ight\}\,.$$

Since this holds for all $\theta \notin N \cup N_1$ and since for each λ, μ

$$f_{\lambda} = U(\theta, \lambda), P(\varphi - \mu)^{-1} = V(\theta, \mu)$$
 a.e.

we conclude that (10) holds, at least for curves Γ of this special type. But any rectifiable curve lying in $\rho(T_{\varphi})$ may be obtained by joining finitely many curves of the special type, so (10) holds in general. Formula (11) is an immediate consequence of (10) and (14).

THEOREM. $\sigma(T_{\varphi})$ is connected.

Proof. It suffices to show that if C is a simple closed curve in $\rho(T_{\varphi})$ the $\sigma(T_{\varphi})$ is either entirely inside or entirely outside C. Let us apply Lemma 6 with $\Gamma = C$ and observe that by (14) f_{λ} is almost nowhere zero. Then we obtain

$$\exp\left\{\int_{\sigma}P(\varphi-\mu)^{-1}d\mu
ight\}=1$$
 .

Thus if

$$arPsi(heta) = egin{cases} 1 & arphi(heta) ext{ inside } C \ 0 & arphi(heta) ext{ outside } C \end{cases}$$

we have $e^{-2\pi i P \phi} = 1$. Therefore $P \phi$ is a real (in fact integer) valued H_2 function and so is constant. But since ϕ is real valued this implies that ϕ is itself constant, and so $R(\phi)$ lies entirely inside or entirely outside C. Assume the latter. The other case is quite similar, except that the point at infinity is involved; but this is handled in the usual way.

Let Ω be a simply connected open set which contains C and such that any point of Ω not inside C belongs to $\rho(T_{\varphi})$. Choose $\lambda_0 \in C$, keep it fixed, and use (10) and (11) to define f_{λ} and g_{λ} for all $\lambda \in \Omega$. Here Γ is always taken to lie in Ω . Notice that

$$\int_{r} P(\varphi - \mu)^{-1} d\mu$$

is independent of Γ (since Ω is simply connected and $P(\varphi - \mu)^{-1}$ is L_p -analytic for μ in Ω) and represents an L_p -analytic function of λ . Therefore f_{λ} and g_{λ} are analytic throughout Ω and by Lemma 3 even L_p -analytic and L_q -analytic respectively inside C. If $h \in H_q^{\circ}$ then

$$\int f_{\lambda}hd heta=0$$

whenever $\lambda \in \rho(T_{\varphi})$, since $f_{\lambda} \in H_{p}$. But since f_{λ} is L_{p} -analytic throughout Ω this identity holds throughout Ω , and so $f_{\lambda} \in H_{p}$ for all $\lambda \in \Omega$. Similarly we have $g_{\lambda} \in H_{q}$ for all $\lambda \in \Omega$. Moreover the identities (9) and (14) which hold in $\rho(T_{\varphi})$ persist in Ω .

We show now that $T_{\varphi} - \lambda I$ is invertible for each λ inside C. Suppose $h \in H_{\varphi}$ and $(T_{\varphi} - \lambda I)h = 0$. Then

$$\overline{\varphi - \lambda} \overline{h} \in H_p^{\mathbf{o}}$$
 .

Since, by (9),

$$\overleftarrow{(\varphi-\lambda)^{-1}\overline{g}_\lambda} \in H_q$$

we deduce $\overline{hg_{\lambda}} \in H_{1}^{\circ}$. But since $hg_{\lambda} \in H_{1}$ we must have $hg_{\lambda} = 0$ and so h = 0. We have shown that $T_{\varphi} - \lambda I$ is one-one.

Next let $k \in H_{\infty}$ be arbitrary and for $\lambda \in \rho(T_{\varphi})$ let $h_{\lambda} \in H_{p}$ denote the solution of

(17)
$$(T_{\varphi} - \lambda I)h_{\lambda} = k .$$

Then

$$(arphi-\lambda)h_{\lambda}=k+\,\overline{l}_{\lambda}\qquad l_{\lambda}\!\in H_p^{\,ullet}$$
 .

Multiplying both sides by $(\varphi - \lambda)^{-1}g_{\lambda}$ and using (13) we obtain

$$g_{\lambda}h_{\lambda}=(arphi-\lambda)^{_1}g_{\lambda}k+(1+ar{v}_{\lambda})ar{l}_{\lambda}$$
 .

Since $g_{\lambda}h_{\lambda} \in H_{1}$ and $(1 + v_{\lambda})l \in H_{1}^{\circ}$ we conclude that

$$g_{\lambda}h_{\lambda}=P(arphi-\lambda)^{-1}g_{\lambda}k$$
 .

Therefore

$$h_{\lambda} = f_{\lambda} P(\varphi - \lambda)^{-1} g_{\lambda} k$$
 .

Let this identity, which holds for $\lambda \in \rho(T_{\varphi})$, be used to define h_{λ} for $\lambda \in \Omega$. Note that since k is bounded $P(\varphi - \lambda)^{-1}g_{\lambda}k$ is L_q -analytic and so h_{λ} is analytic. But since

$$\sup_{\mu\in\sigma} ||\, h_{\mu}\,||_{\mathfrak{p}} \leq \sup_{\mu\in\sigma} ||\, (T_{\varphi}-\lambda I)^{-1}\,||\,||\, k\,||_{\mathfrak{p}}$$

Lemma 3 tells us that h_{λ} is L_p -analytic inside C and satisfies the inequality

(18)
$$|| h_{\lambda} ||_{\mathfrak{p}} \leq \sup_{\mu \in \mathcal{O}} || (T_{\varphi} - \lambda I)^{-1} || || k ||_{\mathfrak{p}}$$

there. By an argument already given $h_{\lambda} \in H_p$ and satisfies (17) there.

Finally let k be an arbitrary function belonging to H_p . Then we can find a sequence of functions k_n belonging to H_{∞} and satisfying $||k_n - k||_p \rightarrow 0$. Let $h_{n,\lambda}$ denote the solution of

$$(T_{\varphi} - \lambda I)h_{n,\lambda} = k_n$$
.

As $n, m \to \infty$ we have $||k_n - k_m||_p \to 0$, so by (18)

 $||h_{n,\lambda} - h_{m,\lambda}||_p \rightarrow 0$.

Then $\{h_{m,\lambda}\}$ converges in L_p to a function $h_{\lambda} \in H_p$ and

$$(T_{\varphi} - \lambda I)h_{\lambda} = k$$
.

This completes the proof of the theorem.

References

1. F. V. Atkinson, Some aspects of Baxter's functional equation, J. Math. Anal. Appl. 7 (1963), 1-30.

2. H. Helson and G. Szegö, A problem in prediction theory, Annali di Mat. 41 (1960) 107-138.

3. H. Widom, On the spectrum of a Toeplitz operator, Pacific J. Math. 14 (1964), 365-375.

Received May 21, 1965. Supported in part by Air Force grant AFOSR 743-65.

CORNELL UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California

J. P. JANS University of Washington Seattle, Washington 98105 J. DUGUNDJI University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN

F. Wolf

K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 19, No. 3 July, 1966

S. J. Bernau, <i>The spectral theorem for unbounded normal operators</i>	391
Lu-san Chen, Asymptotic behavior of solutions of parabolic equations of higher order	407
Lawrence William Conlon, An application of the Bott suspension map to the	
topology of EIV	411
Neal Eugene Foland and John M. Marr, <i>Sets with zero-dimensional kernels</i>	429
Stanley Phillip Franklin and R. H. Sorgenfrey, <i>Closed and image-closed</i>	
relations	433
William Jesse Gray, A note on topological transformation groups with a fixed end point	441
Myron Goldstein, K- and L-kernels on an arbitrary Riemann surface	449
George Joseph Kertz and Francis Regan, <i>The exponential analogue of a</i> generalized Weierstrass series	461
Walter Leighton, On Liapunov functions with a single critical point	467
Bernard Werner Levinger and Richard Steven Varga, <i>On a problem of O</i> .	
Taussky	473
Lowell Duane Loveland, <i>Tame subsets of spheres in</i> E^3	489
Erik Andrew Schreiner, <i>Modular pairs in orthomodular lattices</i>	519
K. N. Srivastava, On dual series relations involving Laguerre	
polynomials	529
Arthur Steger, <i>Diagonability of idempotent matrices</i>	535
Walter Strauss, On continuity of functions with values in various Banach	
spaces	543
Robert Vermes, On the zeros of a linear combination of polynomials	553
Elliot Carl Weinberg, On the scarcity of lattice-ordered matrix rings	561
Harold Widom, <i>Toeplitz operators on H_p</i>	573
Neal Zierler, On the lattice of closed subspaces of Hilbert space	583
Irving Leonard Glicksberg, <i>Correction to: "Maximal algebras and a theorem of Radó"</i>	587
John Spurgeon Bradley, <i>Correction to: "Adjoint quasi-differential operators</i>	
of Euler type"	587
William Branham Jones, <i>Erratum: "Duality and types of completeness in</i>	
locally covex spaces"	588
Stanley P. Gudder, <i>Erratum: "Uniqueness and existence properties of bounded observables"</i>	588