Pacific Journal of Mathematics

ON THE LATTICE OF CLOSED SUBSPACES OF HILBERT SPACE

NEAL ZIERLER

Vol. 19, No. 3

July 1966

ON THE LATTICE OF CLOSED SUBSPACES OF HILBERT SPACE

NEAL ZIERLER

The purpose of this note is to answer two questions which have arisen in connection with the lattice-theoretic characterization of the set of closed subspaces of a Hilbert space of countably infinite dimension which appears in "Axioms for nonrelativistic quantum mechanics," Pacific Journal of Mathematics, Vol. 11, No. 3, 1961, pages 1151-1169.

The material in this section is to replace [2, p. 1165, lines 10-32]. Up to that point it has been shown that the lattice under each finite element of P is isomorphic to the lattice of subspaces of a Hilbert space over a field D which is either real or complex. The orthocomplementation induced in a Hilbert space by such an isomorphism gives rise to an involution of D (vide infra). In this section we show that such an involution is continuous, thereby closing a gap brought to our attention by a comment of M. D. Maclaren.

Let $a \in P_f$ with $n = \dim a > 0$. Choose pairwise orthogonal points A_0, \dots, A_n in (a) and in each line $l_i = A_0 \vee A_i$, $i = 1, \dots, n$, choose, a point E_i different from A_0 and A_i . Clearly the points A_0, E_1, \dots, E_n are independent and the choice of $A_1 \vee \dots \vee A_n$ as improper hyperplane, A_0 as origin and E_1, \dots, E_n as unit points leads to the unique introduction of homogeneous coordinates in (a) in standard fashion. In particular, the proper points of l_1 are precisely those with homogeneous coordinates $(1, \lambda, 0, \dots, 0)$ which we abbreviate as $(1, \lambda) - \lambda$, of course, being any member of the field D that has been constructed. The topology for D is obtained as follows: The subset N of D is a neighborhood of 0 if $\{(1, \nu): \nu \in N\}$ is a neighborhood of A_0 in l_1 . Under this topology, D is either the real or complex field (cf. [2, Lemma 2.11 et seq., p. 1164]).

It is shown in [1] that there then exist an involution σ of D and numbers (= members of D) η_0, \dots, η_n such that

(1) $\eta_i^{\sigma} = \eta_i$,

(2) $\sum x_i \eta_i x_i^{\sigma} = 0$ if and only if all $x_i = 0$,

(3) If $(x_0, \dots, x_n) \in (a)_0$, then $a(x_0, \dots, x_n)'$ (the complement of (x_0, \dots, x_n) in $(a)) = \bigvee \{(y_0, \dots, y_n) \in (a)_0: \sum y_i \eta_i x_i^{\sigma} = 0\}$

Note that by (2), no η_i is 0 and that $1, \eta_1/\eta_0, \dots, \eta_n/\eta_0$ defines the same orthomorphementation as η_0, \dots, η_n ; i.e., we may assume that $\eta_0 = 1$.

Again confining our attention to l_1 , observe that if $\lambda \neq 0$ and $l_1(1, \lambda)'$ (the point of l_1 orthogonal to the point $(1, \lambda)$) has coordinates

(1, μ), then $\mu = -1/\eta_1 \lambda^{\sigma}$. Hence if $\lambda_m \to 1$ and is never 0, $(1, \lambda_m) \to (1, 1)$ by definition (of the topology for D) so $(1, \lambda_m)' \to (1, 1)' = (1, -1/\eta_1)$ by [2, Lemma 2.8]. But $(1, \lambda_m)' = (1, \mu_m)$ with $\mu_m = -1/\eta_1 \lambda_m^{\sigma}$. Then $(1, \mu_m) \to (1, -1/\eta_1)$ which implies $\mu_m \to -1/\eta_1$; i.e., $-1/\eta_1 \lambda_m^{\sigma} \to -1/\eta_1$ so $\lambda_m^{\sigma} \to 1$. Thus, σ is continuous at 1 and hence is continuous (if $\lambda_m \to 0$ then $\lambda_m + 1 \to 1$ so $(\lambda_m + 1)^{\sigma} = \lambda_m^{\sigma} + 1 \to 1$ so $\lambda_m^{\sigma} \to 0$). Of course, this result was automatic in the real case. It follows that σ is either the identity or, in the complex case, conjugation. It follows now from (2) that η_1, \dots, η_n are positive real numbers. If D is the complex numbers, σ is conjugation, for otherwise $(1, i\eta_1^{-1/2}, 0, \dots, 0)$ would be self-orthogonal.

Taking the Hilbert space of n + 1 tuples of D as H_a , the mapping $(x_0, \dots, x_n) \rightarrow \{\lambda(x_0, \dots, x_n) : \lambda \in D\}$ clearly induces a continuous isomorphism φ_a of (a) on the lattice L_a of subspaces of H_a such that the orthocomplementation induced by φ_a in L_a is obtained from the inner product $(x, y) = \sum x_i \eta_i \bar{y}_i$ for H_a .

2. The following is a replacement for [2, p. 1165, lines 33 to 41]. Its purpose is to insure that all the isometries $\psi_{b,a}$ are linear rather than conjugate linear. I am indebted to V. S. Varadarajan for calling my attention to this omission.

Let $a \leq b$ be finite and suppose that, in accordance with what has preceded, we have selected a Hilbert space H_a over D of dimension $1 + \dim a$ and a continuous isomorphism φ_a of (a) on the lattice L_a of subspaces of H_a which is orthogonality-preserving in the sense that

(13)
$$\varphi_a(c) \perp \varphi_a(d)$$
 if and only if $c \perp d$.

Suppose that H_b, φ_b , have been similarly chosen for b.

Now $\varphi_b \varphi_a^{-1}$ is a continuous, orthogonality-preserving isomorphism of L_a in L_b . Hence, as is well-known and not difficult to show, there exists a continuous automorphism σ of D and a σ -isometry $\psi_{b,a}$, unique up to multiplication by a number of modulus one, providing dim a > 0(see below), such that $\psi_{b,a}$ induces $\varphi_b \varphi_a^{-1}$ in the sense that $\varphi_b \varphi_a^{-1}[v] =$ $[\psi_{b,a}v]$ for all $v \in H_a$, where [v] denotes the linear subspace generated by v. A σ -isometry ψ of H is a mapping of H in itself with the following three properties:

(14)
Additivity:
$$\psi(u + v) = \psi(u) + \psi(v)$$

 σ -linearty: $\psi(\lambda u) = \lambda^{\sigma}\psi(u)$
 σ -isometry: $(\psi(u), \psi(v)) = (u, v)^{\sigma}$.

A σ -isometry is said to be *linear* or *conjugate-linear* when σ is the identity or conjugation respectively.

If D is the real field, the automorphism σ is the identity, while

in the complex case, in view of its continuity, σ may be either the identity or conjugation. Observe that if dim a = 0 and u, v are unit vectors in $H_a, \varphi_b(a)$ respectively, then $\lambda u \to \lambda v$ and $\lambda u \to \overline{\lambda} v$ both induce the mapping $\varphi_b \varphi_a^{-1}$ of L_a in L_b . In other words, $\psi_{b,a}$ may be chosen both linear and conjugate-linear when dim a = 0, independent of the choice of H_a, φ_a and H_b, φ_b . In general, the linearity of $\psi_{b,a}$ may be achieved through the proper choice of H_b, φ_b as follows. Suppose that $\psi_{b,a}$ inducing $\varphi_b \varphi_a^{-1}$ is conjugate-linear. Let $\{v_i\}$ be a complete orthonormal set for H_b and define $\gamma: H_b \to H_b$ by: $\gamma(\sum_i \lambda_i v_i) = \sum_i \overline{\lambda_i} v_i$. Let φ denote the automorphism of L_b induced by γ and let $\overline{\varphi}_b = \varphi \circ \varphi_b$. Then $\overline{\varphi}_b$ is a continuous, orthogonality-preserving isomorphism of (b) on L_b which is induced by the linear isometry $\overline{\psi}_{b,a} = \gamma \circ \psi_{b,a}$.

Suppose now that dim a > 0, that H_a, φ_a have been chosen arbitrarily and that for every finite b > a, H_b, φ_b has been chosen as above so that $\varphi_b \varphi_a^{-1}$ is "linear" in the sense that every isometry of H_a in H_b which induces it is linear. For each finite $c \ge a$ let $H_c = \varphi_{a \lor c}(c)$ and let $\varphi_c = \varphi_{a \lor c} \mid (c)$. Then $\varphi_{a \lor c} \varphi_c^{-1}$ is linear, for it is induced by the projection in $H_{a \lor c}$ of its subspace H_c .

Now that H_c , φ_c have been assigned to every finite c, it remains to show that $\varphi_{e_1}\varphi_{e_2}^{-1}$ is in fact linear whenever $c_2 < c_1$. The type of argument we shall use involves the introduction of $c_3 < c_2$ for which both $\varphi_{e_1}\varphi_{e_3}^{-1}$ and $\varphi_{e_2}\varphi_{e_3}^{-1}$ are known to be linear. The linearity of $\varphi_{e_1}\varphi_{e_2}^{-1}$ then follows from the equation $\varphi_{e_1}\varphi_{e_3}^{-1} = (\varphi_{e_1}\varphi_{e_2}^{-1})(\varphi_{e_2}\varphi_{e_3}^{-1})$.

Given finite $c_2 < c_1$, let $b_i = c_i \lor a$, i = 1, 2. Now $b_2 \leq b_1$ and $\varphi_{b_1} \varphi_{b_2}^{-1}$ is linear, for $\varphi_{b_i} \varphi_a^{-1}$, i = 1, 2 are linear by construction and $\varphi_{b_1} \varphi_a^{-1} = (\varphi_{b_1} \varphi_{b_2}^{-1})(\varphi_{b_2} \varphi_a^{-1})$. Since $\varphi_{b_1} \varphi_{b_2}^{-1}$ is linear and $\varphi_{b_2} \varphi_{c_2}^{-1}$ is linear by construction, $\varphi_{b_1} \varphi_{c_2}^{-1} = (\varphi_{b_1} \varphi_{b_2}^{-1})(\varphi_{b_2} \varphi_{c_2}^{-1})$ is linear. Finally, since $\varphi_{b_1} \varphi_{c_2}^{-1}$ is linear and $\varphi_{b_1} \varphi_{c_1}^{-1} = (\varphi_{b_1} \varphi_{b_2}^{-1})(\varphi_{b_2} \varphi_{c_2}^{-1})$ is linear. Finally, since $\varphi_{b_1} \varphi_{c_2}^{-1}$ follows from the equation $\varphi_{b_1} \varphi_{c_2}^{-1} = (\varphi_{b_1} \varphi_{c_1}^{-1})(\varphi_{c_1} \varphi_{c_1}^{-1})(\varphi_{c_1} \varphi_{c_2}^{-1})$.

Thus, each finite c has been provided with H_c , φ_c in such a way that c < d implies $\varphi_d \varphi_c^{-1}$ may be induced by a linear isometry $\psi_{d,c}$ of H_c in H_d which is unique up to multiplication by a number of modulus one. Our next task is to show that these arbitrary multipliers may be chosen consistently; i.e., so that

(15)
$$a < b < c$$
 implies $\psi_{c,a} = \psi_{c,b} \psi_{b,a}$.

3. Erratum, page 1167, line 4 from bottom. For $\sum_{i=1}^{n} \lambda_i(u) \psi_{b_n, a_i}$ read $\sum_{i=1}^{n} \lambda_i(u) \psi_{b_n, a_i} u_i$. 585

NEAL ZIERLER

References

1. G. Birkhoff and J. von Neumann, The logic of quantum mechanics, Ann. of Math. 37 (1936), 823-843.

2. N. Zierler, Axioms for nonrelativistic quantum mechanics, Pacific J. Math. 11 (1961), 1151-1169.

Received April 29, 1965.

INSTITUTE FOR DEFENSE ANALYSES PRINCETON, NEW JERSEY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California

J. P. JANS University of Washington Seattle, Washington 98105 J. DUGUNDJI University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN

F. Wolf

K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced). The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, Richard Arens at the University of California, Los Angeles, California 90024.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley 8, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 19, No. 3 July, 1966

S. J. Bernau, <i>The spectral theorem for unbounded normal operators</i>	391
Lu-san Chen, Asymptotic benavior of solutions of parabolic equations of higher order	407
I awrence William Conlon An application of the Bott suspension map to the	107
topology of EIV	411
Neal Eugene Foland and John M. Marr, Sets with zero-dimensional	
kernels	429
Stanley Phillip Franklin and R. H. Sorgenfrey, <i>Closed and image-closed</i>	
relations	433
William Jesse Gray, A note on topological transformation groups with a fixed end point	441
Myron Goldstein, K- and L-kernels on an arbitrary Riemann surface	449
George Joseph Kertz and Francis Regan, <i>The exponential analogue of a</i>	
generalized Weierstrass series	461
Walter Leighton, On Liapunov functions with a single critical point	467
Bernard Werner Levinger and Richard Steven Varga, <i>On a problem of O</i> .	
Taussky	473
Lowell Duane Loveland, <i>Tame subsets of spheres in</i> E^3	489
Erik Andrew Schreiner, Modular pairs in orthomodular lattices	519
K. N. Srivastava, On dual series relations involving Laguerre	
polynomials	529
Arthur Steger, <i>Diagonability of idempotent matrices</i>	535
Walter Strauss, On continuity of functions with values in various Banach	
spaces	543
Robert Vermes, On the zeros of a linear combination of polynomials	553
Elliot Carl Weinberg, On the scarcity of lattice-ordered matrix rings	561
Harold Widom, <i>Toeplitz operators on H_p</i>	573
Neal Zierler, On the lattice of closed subspaces of Hilbert space	583
Irving Leonard Glicksberg, Correction to: "Maximal algebras and a	
theorem of Radó"	587
John Spurgeon Bradley, Correction to: "Adjoint quasi-differential operators	
of Euler type"	587
William Branham Jones, Erratum: "Duality and types of completeness in	
locally covex spaces"	588
Stanley P. Gudder, <i>Erratum: "Uniqueness and existence properties of</i>	
bounded observables"	588