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Let A be a function algebra on its maximal ideal space
M(A), and let P be a Gleason part of M(A). Itis easily seen
that P is then a s-compact completely regular space. We prove
the converse: if K is completely regular and s-compact, then
there exists a function algebra whose maximal ideal space
contains a part homeomorphic to X. Every bounded continuous
function on that part is the restriction of a function in the
given algebra. Consequently no subset of the part can have
an analytic structure.

Suppose X is a compact Hausdorfl space and A is a subalgebra
of C(X), the algebra of continuous complex valued functions on X.
Assume A separates the points of X, contains the constant functions,
and is uniformly closed. A is then called a function algebra on X.
With the weak star topology, the maximal ideal space M(A4) of A is
a compact Hausdorff space. We consider X as embedded in M(A) and
A as a function algebra on M(A).

In [4] Gleason noted that an equivalence relation could be defined
on M(A) by setting x ~ y when the funectional norm ||z — y |l < 2.
The equivalence classes for this relation are called the “parts” of M(A).
In certain cases parts have been used to impose an analytic structure
on M(A) (see for example [7]).

Let P be a part of some M(A). Then clearly P is a completely
regular space and fixing pe P we have

P=UlgeMA):lp—qll=2—1n},

where each term in the union is weak star closed, and hence compact,
so that P is o-compact.
Some results in this paper have been announced in [3].

2. We begin with a theorem which will be our basic tool in
constructing parts.

THEOREM 1. Let A be a function algebra, S a hull-kernel closed
subset of M(A) and P a part of M(A). Then there is a function
algebra B such that M(B) contains a part Q homeomorphic to PN S.
Moreover, B|Q is isometrically tsomorphic to A| PN S.
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Let a be a positive irrational number, and denote by A, the
function algebra on the torus 7 generated by the functions z — z"z2
where m + na = 0. Let m® be the point in M(A,) represented by
Haar measure on 7* (which is multiplicative on A,). Then m'¢ T
and {m’ is a part of M(A,) ([5] p.316). If J is a proper closed
subset of T then A,|J is dense in C(J) ([8] pp. 69-70), so that when
xe M(A,)\J there is a function fe A, such that |f(z)| > max,e, | f(2)],
as otherwise evaluation at « would induce a complex homomorphism
of C(J).

Proof of Theorem 1, Let A, X A be the function algebra on
M(A,) x M(A) generated by the functions of the form (z, y) — f(2)g(y)
where fe 4, and ge A. M(A,& A) is homeomorphic to M(A4,) x M(A)
in a natural fashion.

Set J = {ze T*:Realz, =< 0} and

X = (J x M(A)) U (M(A,) % S).

X is a compact subset of M(A,) x M(A). Our algebra B is the uni-
form closure on X of {#|X:hec A, ® A}. M(B) is then the A4, R A-
hull of X,

{ge M(A. ® A):19(q)| = max,cx | g(p)| for all gec A, ® A} .

If (2°9°) e M(A, R A)\X, then 2°¢ J and y°¢ S. As S is hull-kernel
closed, there is a function ¢ in A with ¢g(¥°) =1 and ¢(S) = 0. As
x°¢ J, there is a function f in 4, with f(2°) = 1 and max,e; | f(?) | < 1.
Replace f by a suitable power f" so that max,e,|f™()| < (1/|lgl).
Then Az, y) = f"(®)gly) is in A, QA and A2’ ¥") =1 while
max,ey | 2(p)| < 1. Hence M(B) = X.

Take @ = {m*} x (P NS). Then @ is subset of X. For se PNS,
let p, = (M, s) e Q. Let (2% 9y°) e X\Q. If a° =+ m’, then using functions
of the variable x € M(A,) alone we see that (2, y°) « p, for any se PN S.
Similarly if y°¢ P, then (2°, y°) # p, for all such s. Finally if y°¢ S,
then by the choice of X, a°+ m’. Hence @ is a union of parts.

If sePNS and ge B, then

o(p.) = | g, i

where )\ is normalized Haar measure on 77 because \ represents m’
for A,. Take s and ¢t in PN S, ge B with ||g|| = 1. Then

90 — 0(p) | = | 196, 5) = g(a, B)]

={ 20+ 19w 5 — g, 0] dn
favs J
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Now if xed, then {x} x M(A)C X so that y — g(x,y) is in A with
norm =< 1. Therefore there is a constant ¢ < 2 such that for each
xed |g(x,s) — g(x, t)| < ¢, because s ~ t. Hence

lg(p,) — 9(p) | = S 2dn + S cdn < 2
7T J

and p, ~ p,. Thus @ is a part.

It is obvious that @ is homeomorphic to PN S and that B|Q =
A|P NS, because the coordinate » is constant on Q.

As a corollary to Theorem 1 we now prove a special case of our
main result because in this case the proof is much simpler.

D denotes the closed unit dise in the complex plane and D° its
interior. A, is the algebra of all functions continuous on D and
analytic on D°. If K is a locally compact Hausdorff space, then
K* = K | {e} is its one point compactification.

COROLLARY, Let K be a locally compact o-compact Housdorff
space. Then there exists o function algebra B such that M(B)
contains a part Q homeomorphic to K. Moreover B|Q is isometrically
isomorphic to C(K*)| K.

Proof. let A={feCE* xD):f|{x} x De A, for each ze K*
and f|K* x {0} is constant}. Then M(A) = K* x D/~ where =~
identifies K* x {0} to a point, and P = {(x,2)e M(4):|z| <1} is a
part in M(A), as P is a union of dises with the centers identified.

Since K is g-compact, {c} is a G; set in K*, Hence there is a
continuous function %: K*—][1/2, 1] such that A7'(1) = {=}. Let
S < M(A) be the graph of 4, S = {(x, 2(x)) : x € K*}. Then the function
g(z, 2) = (h{x) — 2/3h(x) — z) is in A and vanishes exactly on S, so that
S is hull-kernal closed. And clearly SN P is homeomorphic to K.
Finally if fe C(K*), then f'(x,?2) = zf(x)/h(x) is in A and f'(z, h(x)) =
S(x)y when xe K, Thus A|SNP=C(K*)| K. The conclusion of the
corollary now follows directly from Theorem 1.

3. Before proving our main theorem we construct the algebra
to be used in place of the disc algebra A,. Let I be an index set, and
let Y; be the product of discs, Y; = [[(D:7¢I). Denote by A, the
subalgebra of C(Y;) generated by the coordinate functions z;,2¢l
where z,(p) = p;. Then M(A;) = Y;, for if pe M(A,), then |p(z;) | < ¢
so that ¢ is evaluation at e Y; where \; = ¢(2;). Let 0 be the
“origin” in Y, 2,(0) = 0 for all 7¢I, and let P, be the part of M(4,)
containing 6. We now need a well known fact which is proved using
elementary conformal mappings of the disc D. If (g,)7. is a sequence
in A with ||g,|| =1 and g¢,(x) — 1, then & ~ ¥ implies g,(y) — 1.
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LEMMA. Let pc M(A,). Then pe P, if and only if there exists
a < 1 such that |z(p)| = a for all vel.

Proof. If no such number exists, then there is a sequence (g,);,
of coordinate functions z; such that g¢,(p) — 1 while ¢,(6) = 0. Hence
p+* 0, by the above remark. If such an a exists, then let p: D— Y;
by (o(t)); = t/a-p;. Then p(0) =0, o(a) = p and for fe A, fope A,
with || fep|| = || f|l. Then as 0 ~ a for A, we have 0 ~ p.

THEOREM 2. Let K be a o-compact completely regular space.
Then there s an algebra B and a part Q@ C M(B) such that Q 1is
homeomorphic to K and B|Q = C*(K), the algebra of bounded con-
tinuous functions on K.

Proof. Let BK be the Stone-Cech compactification of K. Take®
I=p38K\K and set A={feC(BK x Y;):fl{x} x Y;e A; for all ze K
and f|BK x {6} is constant}. Then M(A) = K X Y;/~ where ~
identifies SK x {4} to a point, and P = {(x, 2) € M(A):z¢c P,} is a part
of M(A).

Write K = U, K,, where K, K,., and each K, is compact.
Then for each te BK\K there exists a continuous function %,: SK —
[1/2, 1] with A,(f) =1 and A, (x) <1 — 27" when ¢ K,. Let p: BK—
M(A) be defined by o(x) = (x, H(x)) where (H(x)), = h(x) for each
te BK\K. Then p is a homeomorphism of SK onto S = p(BK) and
o(K) =S NP by the above lemma. S is hull kernel closed in M(A)
because S = M {9:(0):t € BK\K} where g,(x,z) = (h,(x) — 2,/3h,(2) — 2,).
And A|SNP=CYK), because if feC*K) and f is its unique ex-
tension to BK, then for any tec BK\K, f'(x, 2) = 2,f(2)/h(x) is in A
and f’ = fo o~ on S. The conclusion now follows from Theorem 1.

We remark that with these arguments one can get some restriction
algebras B| @ different from C?(K). For example, if K is compact
and A; is an algebra with M(A, = K, then there is an algebra B
with part @ homeomorphic to K and B|Q = A,.

4. Acknowledgments, Professor Eva Kallin Pohlmann® simpli-
fied the example given in [3], enabling us to improve our arguments
significantly, We thank Professor Lewis Robertson for a helpful
conversation, Finally, we are deeply indebted to Professor Irving
Glicksberg for introducing us to function algebras and for guiding
our research throughout.

1 Jf K is ecompact, let I be a singleton, and proceed as in the corollary.
2 She observed that X = {(z,w): 2| =1, w= £12} U{@z,w): |z =1,Im2z> 0, |w| <1}
is a polynomially convex subset of C2 containing a part consisting of two dises.
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