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The purpose of this note is to prove the following theorem,

Tueorem, Let N be a bounded linear operator on Hilbert
space H satisfying

(1) INT—TN||=||[N*T—TN*||

for all bounded linear operators 7. Then N is (obviously)
normal and the spectrum of N lies on a circle or straight
line,

Here N* denotes the adjoint of the operator N.

It is clear that if S is a unitary or self-adjoint operator
and « and B are complex numbers, then N = af -+ 8S satisfies
(1). The theorem asserts that the converse is also true,.

After noting that in dimensions two and three the theorem is
trivially true, we proceed to the first of two parts of the proof.

I. Dimension four. Let H be four dimensional Euclidean space.
Since a normal operator N is unitarily equivalent to a diagonal matrix
it is no restriction to assume that N has the form

M 0 0 0
0 » 0 0
0 0 X 0
0 0 0 »n

where the \;,’s are the eigenvalues of N, Consider the matrix

0 0 1 1
0 0 1 ¢
T = .
0 0 0 O
0 0 0 O
Then
0 0 (7\11 - 7“3) (7V1 - M)
NT — TN — 0 0 (Ov—2) (v —2)
0 0 0 0
0 0 0 0

and || NT — TN |} is the largest eigenvalue of the matrix
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2 2 O“l - /\43)()“2 - 7\'3)
Aol sl T
v = M) (e — N9)

+ (v — A — )
0 0 0 0

0 0 0 0

Mo = NP+ [ =M 0 0

On the other hand, || N*T — TN* |’ is the largest eigenvalue of a
matrix B which has the same form as A but with \; replaced by X,
1=1,2 3,4,

Let P(X) and P*(X) be the characteristic polynomials of A and
B, respectively. Then from the form of the matrices A and B one
sees that the polynomials P(X) and P*(X) differ only in the coefficient
of X*® Therefore || NT — TN|| =||N*T — TN*|| if, and only if,
P(X) and P*(X) are equal and a routine computation shows that
this holds if, and only if,

[ = X0 — Ng) 4 100 — A0 — N
X 0w = M) (he — M) — 10w — M)A — Ay M)l
= 0w — ) — X))+ 100 — M)A — A
[(7”1 ANy — Ng) — 2N — M)(M — A

which reduces to the condition that (v; — M) — A — MMy — N,)
be real. The latter holds if, and only if, A, A, A5, 1, lie on a line or
circle, which proves the theorem in dimension four.

Let (a,, a,, a;, a.) be a vector in four dimensional H. Since

(NT — TN)(a,, a,, as, a,)
= ((A’l - 7\43>a3 + ()‘J - )‘u)au (N.’ - X3)CL3 + i(xz - /\44)“4: 0, O) ’
we remark that we have just shown that

(2) sup [0y — Nas + 00— N)a P+ | v — Ng)as + 10w — Aa, P

Zla;i2=1

is the largest root of P(X) = 0, and also that

(3)  sup [[Ov = Xa)aa + (0 — M) [P+ [ Qe — Na)as 4 (N — M) ']

Zla;l2=1

is the largest root of P*(X) = 0.

II. Higher dimensions., Now let H be a finite or infinite
dimensional Hilbert space of dimension > 4, Let N be a normal
operator satisfying ||[NT — TN|| = ||N*T — TN*|| for all T. Sup-

pose N has spectrum S and spectral representation N = S AE,, Let
N
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iy Mgy A, A be distinet points of S. (If S has no more than three

points then the theorem 1is trivially true.) Choose an ¢ > 0 but

smaller than the minimum of the distances |n; — \;|, ¢ # J; let S, =

SN{MIv=—n ] <ehk=1,234, Let E, = S dE, and choose y ¢ H
S

with || Eyy || = 1 for k = 1,2,3,4 and let @, = E,y. Then (z;,2,) =0
if 7 # 7 and each x, is an approximate eigenvector in the sense that

[| No, — M || = H SS N E %, — Mﬂgs dE\x,
A A

Smax|xn— | <e.
AES

We can therefore write Nz, = \,x, + eu, where ||u, || = 1. Similarly
N*w, = N, + eul, || u) || =1
Define an operator T' on H by

Te = [(Byw, x;) + (B, v))e, + [(Be, 2.) + (B, )], .
Now for xz¢ H,

NTz = [(Ew, z;) + (B, )\,
+ (B, z;) + (Ew, )\ + 0:(2) ,

where || d,(x) || = 4e||x||. Also
T(Nz) = [(EsNzx, x5) + (E,Nz, 2,)],
+ [(F: Nz, x;) + i(E.Nx, x,)], .
Since NE, = E.N,k=1,2, 3,4, it follows that
TNz = [(Eyr, N2s) + (B, M),
+ [(Hye, Nais) + (B, )|+ 0y(x)

where [[0:(x) || = 4e || ]
Thus
(NT — TN)w||
= [[ [0 — N)(Es, 22) + (0 — N (B, x,) |,
+ [ — M) (B, 25) + 10 — MY (E2, 2)]e, + vi(2) ],

where || v.(z) || =< 8¢ || ]|.
Similarly

(N*T — TN*)a||

= 10w = N (B, @) + (n — N)(Ew, ,)]2,
+ [ — M) (B, ) + 100 — M) Ew, x)]e, + v(2) ]|,

where || 7,(2) || = 8¢ |2 ]|
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Since «, and z, are orthogonal,

N|NT — TNIP
= sup || (v — ) (o, @) + (v — NNEL2, 2) |F

llzll=1

+ l ()\12 - Xs)(Esx, ms) + 7:0"2 - )\,4)(E4.’)6, .’)(}4) l2] =+ 0
and

(NT TN
= sup [| (v — M) (B, @) + (v — M) (Ew, o) [

ilzll=1

+ [ — M) (Hyw, @5) 4+ 1N — N)(H2, 2,) 7] + 07,

where 6, 0" = 8,

Thus if || NT — TN = ||N*T — TN*||, we obtain by (2) and
(3) that the largest zeros of P(X) and P*(X) differ by at most 16e,
Therefore all the coefficients of P(X) and P*(X) are close to each
other and in particular the imaginary part of

(M - )":)(xz - N,)(M - XB)(M - >\'4)

is bounded by a function of ¢ which goes to zero with e, Letting
e— 0 we again find that (A, — N)0w — A)(M — )N — \,) must be
real and so M\, X\, A; and A, lie on a line or a circle. Since the \,;’s
were arbitrary, the proof is concluded.

Received April 27, 1965.
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