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We will characterize the gamma distribution by the nature
of the joint distribution of the two quotients X,/X;, X,/X; for
three identically gamma distributed random variables,

It is well known that if two independent identically distributed
random variables X, X, have the gamma distribution given by the

density

0 for =0 @ > 0
(1) flz) = I:ZO) x?~'¢* for x > 0 (p > 0)
then their quotient
(2) Y= X/X,

has the beta distribution of the second kind given by the density

0 for y =0

(3) gy)=4_1  y~ for y > 0.

B(p,p) 1+ y)”

However, this property does not characterize the gamma distribu-
tion uniquely, There exist pairs of independent positive identically
distributed random variables X,, X, whose common distribution func-
tion Fl(z) differs from the one given by the density (1), but where
the quotients (2) are distributed according to the density (3). Some
such distribution functions F(x) are given by the following densities

jO for x £ 0
fil@) =197 pigats for g >0
I'(p)
0 for x <0
2p 4+ 1
2r
(4) File) = ( ) =

2 - .
F(%)l(p + 1> (1 4 a?)ptise

for x >0
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0 for t <0
B zr( 2p + 1) )
fo@) = B . a — for x > 0.
r(_p_) p(__p + 1) (1 + aryrets
2 2

Now let X, X,, X;, be three independent positive identically dis-
tributed random variables whose common distribution function is F{(x).
It is interesting that although the distribution of one quotient (2)
does not characterize F(x) uniquely, the joint distribution of two such
quotients

(5) Y1 = XI/X3y Y2 = X‘.‘/X3

characterize (by some assumptions) F(x) uniquely, up to a change of

the scale.
The condition of identical distributions of X, X,, X; may be

omitted. The distribution functions F(x) of the independent positive
random variables X,(k = 1, 2, 3) are uniquely characterized (by some
assumptions) by the joint distribution of the pair of qoutients (5), up

to a change of the scale,
The normal distribution is also characterized in the same way.

There are also some generalizations of these problems.

1. Some lemmas.

LEemMA 1. Let X, X,, X; be three independent real random
variables, and let

(6) Z1:X1~—X3,Z2:X2—X3.

If the characteristic function of the pair (Z,, Z,) does mot vanish,
then the distribution of (4, Z,) determines the distributions of X,

X,, X; up to a change of the location.

Proof. Denote o(t, t,) the characteristic function of the pair
(Z., Z,), and @,(t) the characteristic functions of X, (k = 1, 2, 3). Then
there is

p(t, t.) = Eexp|i(t,Z, + t,Z,)
(7) = Eexp [i[t(X, — X;) + t(X. — Xy)]]
= Fexp |i[t. X, + t.X, + (—t, — t.)Xi]]
= pu(t)puoto)ps(—t — L) .

The condition of nonvanishing of @(¢,, ¢,) is equivalent to nonvanish-
ing of any of the functions ¢,(t)(k =1, 2, 3).
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Let U, U,, U, be another three independent real random variables,
having characteristic functions () = Ee*7s (i = 1, 2, 3) and satisfy-
ing the assumptions of Lemma 1. ILet V,=U, - U, V,=U, — U,
and (¢, t,) = K exp[i(t,V, + ¢, V,)]. Making the same considerations
as for formula (7) it is easy to see that there is

(8) "/’(tls tz) - ”‘/fl(tl)”lf'fz(tz)%ffs(_tl - t2) .

Let the pairs (Z, Z,) and (V,, V,) have the same distribution.
Then their characteristic functions are equal. Using formulae (7) and
(8) one can obtain the following equation

(9) “/fl(tl)“/fz(tz)“/fs(“‘tl — 1) = @1(t1)@2(t2)¢3(_t1 — 1)
(—o0 <t < 4 00, —c0 <t < +o0).
Put
(10) Tll) = o) pu(t) (b =1,2,3).

Putting (10) intc the equation (9) one obtains the following equation

—oo <1, < +o<>)

D0t ps(—t — &) = 1
(11) Di(E)Pe(ta)Ds(— 1t — 1) (_oo<t2<+m

in which p,(t) are unknown functions; they are complex functions,
continuous on the whole line —co << ¢t < + o0, satisfying the condi-
tion

(12) . p0) =1 (k=123).

In order to solve the equation (11) let us put ¢, = ¢, ¢, = 0 and, later
t, =1, t, = 0. Then, using (12),

(13) p(t)-ps(—1) = 1, (1) po(—1t) = 1.

Putting p.(t) and p.(¢t) given by (13) into the equation (11) and chang-
ing signs, we obtain

(14) pii(tl + tz) - ps(ti)'ps(tz) .

The only continuous function which satisfies the equation (14) and
condition (12) is the exponential function

(15) Di(t) = e (—oo <t < +o0)

where ¢ is a complex number. Putting (15) into (13) it is easy to
see that

(16) Di(t) = Do(t) = pa(t) = € .



72 IGNACY KOTLARSKI

Putting (16) into (10) there is
(17) Pall) = epu(t) (b =1,2,3).

Since the known property of characteristic functions @(—t) = @(t)
the formulae (17) become

(18) Pi(t) = eP'pit) (b =1,2,3)

where b is a real constant. This means that the distributions of X,
are the same as of U, up to a change of the location.

Remark 1. The assumption of nonvanishing of the joint char-
acteristic function of the differences (6) may be replaced by the as-
sumption that all X, have analytic characteristic functions. All con-
siderations are valid in such a case for ¢ complex, being inside a
circle |t| < t, (¢, > 0), where the characteristic functions do not vanish.
Because of the analyticity of the characteristic functions the formulae
(18) may be spread on the whole real line.

Remark 2. If the assumption of nonvanishing of the characteri-
stic functions is omitted then the theorem becomes false. In order
to show this the following example is given.

Examplé. Let (X, X,, X;) and (U, U,, U;) be two three’s of
independent real random variables having their characteristic func-
tions ¢,(t) and +,(f) respectively. Let be

0 for |[¢]>1

@:(t) = @ut) = Pri(t) = Pre(t) = 1—|t| for [t| =1
(19) 0 for |t| > 2
P =11 ey for |t] = 2

llfs(t) = @y(1) for [t] =2, "/fs(t +4) = ”';ks(t) .

It is easy to see that in such a case the equation (9) holds though
Jrs(t) is not the same as @i (t). Hence there exist trios (X, X, X,)
and (U, U,, U,) of independent real random variables whose distribu-
tions are not the same, but where the distributions of the correspond-
ing pairs of differences (X, - X,, X, — X;), (U, — U,, U, — U,) are
the same,

Remark 3. Lemma 1 remains true if the three independent real
random variables (X, X,, X;) are replaced by = such random variables
(X, X, -+, X,)(n = 3), and the pair of differences (X, — X; X, — X5)
by n — 1 differences (X; — X, X, — X,,, -+, X, — X,).
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Remark 4, The differences in formula (6) may be replaced by
sums,

Remark 5. Lemma 1 remains true if the real random variables
X, are replaced by n-dimensional real random vectors.

LEMMA 2. Let X, X,, X, be three independent positive random
variables, and let (Y., Y,) be their quotients given by formula (5).
If the joint characteristic function of the pair (In Y, In Y,) does
not vanish, then the distribution of (Y., Y,) determines the distribu-
tions of X,, X,, X; up to change of the scale.

Proof. The proof of Lemma 2 is obvious because In X, (k =1,
2, 3) satisfy the assumptions of Lemma 1.

REMARK 6, The positive random variables X, in Lemma 2 may
be replaced by symmetrical about the origin real random variables

satisfying the condition P(X, = 0) = 0.

2. Characterizing the gamma distribution. The problem of
characterizing the gamma distribution of two independent random
variables X,, X, by the distribution of their quotient was first posed by
J. G. Mauldon [9], he showed that there is no such characterization.
Further investigations on this problem were made by I. Kotlarski [1].
A full treatment of the problem has been made by R. G. Laha [6]
(on this subject see also E. Lukacs, R. G. Laha [7], p. 59). The authors
of [1} and [6] searched for the properties of the set of distribution
functions F(x) for which the quotient (2) is distributed according to
(3), where X,, X, are independent positive random variables identically
distributed according to Fl(x).

THEOREM 1. Let X, X,, X, be three independent positive random
variables, let (Y, Y,) be the pair of the quotients given by (5). The
necessary and sufficient condition for X, to be gamma distributed
with parameters p, and a (@ — common, k =1, 2, 3) is that the joint
distribution of (Y., Y,) is the bivariate beta distribution of the second
kind given by the demsity

I'(py + p: + ps) . Yyt for U7 0
(20) 9y, vs) = { L @0 (ps) (L + o + gp)?r 72t Y. >0
0 elsewhere

Proof. The characteristic function of In X, where X, is gamma
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distributed with parameters p,, a, is given by

(21) ol = Beore — g L0+ 1)
()

The characteristic function of the pair (In Y., In Y,) is

p(ty, &) = ¢1(t1)@2(t2)@3(—t1 — 1)
— L'(p, + aty)  L'(py + 1ty) L L(ps — 1ty — ity
I'(p,) I'(p.) 1'(ps)

it is easy to see that the characteristic function of (In Y, In Y,) where

(Y, Y,) is distributed according to the density (20) is also given by
the right side of the formula (22), This ends the proof.

(22)

THEOREM 2. Let X,, X,, X, be three independent positive random
variables, let (U, U,) be given by formulae

X U. = X, + X

(23) U= ——"—, :
X + X X + X, + X,

The mecessary and sufficient condition for X, to be gamma distri-
buted with parameters p, and a (@ — common, k =1,2,3) is that
U, U, are independent bzta distributed random wvariables, U, with
parameters (p,, p.), and U, with parameters (p, + ., Ds).

Proof. The necessary condition is obvious, In order to prove
the sufficient condition let us put

Y, U. — Y, + Y,

(24) U =", .= 1
Y. +7, 1+Y.+7,

where Y, and Y, are given by (5). It is easy to see that if U, U,
are independent, U, being distributed accoring to the beta law of the
first kind with the density

1
(25) g:(w) = { B(D01, p2)
0 elsewhere

uP (1 — )Pt for0<u<1

and U, has a similar distribution with parameters (p, + p,, p;), then (Y7,
Y,) is distributed according to the density (20). Using Theorem 1 it
is easy to see that X, are gamma distributed with parameters (p,, a),
(@ — common, k = 1,2,3). This ends the proof.

3. Characterizing the normal distribution. The problem of
characterizing the normal distribution of two independent symmetric-
al about the origin random variables by the distribution of their quotient
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has been considered by several authors. J. G. Mauldon [9] showed
that there is no such characterization. Further investigation on this
problem were made by R. G. Laha [3, 4, 5], I. Kotlarski [2], G. P.
Steck [10].

Though there is no characterization of two independent symmetri-
cal about the origin random variables by the distribution of their
quotient, there is a characterization of three such random variables by
the joint distribution of two their quotients. In this Section two
theorems on characterizing the normal distribution in such a way are

presented.

THEOREM 3. Let X, X,, X, be three independent real symmetri-
cal about the origin random wvariables satisfying the condition
PX,=0 =0, (k=1,2,8). Let (Y, Y, be the pair of quotients
given by formula (5). The mecessary and sufficient condition for
X, to be normal distributed with a common standard deviation ¢ is
that the joint distribution of (Y., Y,) is the bivariate Cauchy dis-
tribution given by the density

1 1 <—<>0<y1< +<><>)

26 L) = o
(26) Mot = o TR \ oo << 4en

Proof. The characteristic function of In| X, | where X, is normal
distributed with zero mean and standard deviation ¢ is

e I((1 +_it)/2)

(27) pu(t) = Eexpitin | X, | = (61 2)
Vi

The characteristic function of the pair (In]Y,|,In| Y;)) is

(28) P(t;, 1) = @1(t1)fpz(t2)fpz(‘jt1 — 1) ' .
_ 7;/2 F( 1 %é’bt1 >F( 1 %—2@752 )F(l — Z(g + t)> .

It is easy to see that the characteristic function of (In| Y|, In|Y,])
where (Y, Y,) is distributed according to the density (26) is also given
by the right side of the formula (28). This ends the proof.

THEOREM 4. Let X, X,, X, be three independent real symmetri-
cal about the origin random variables satisfying the condition P(X,
=0=0(=1,2,3). Denote

X V. — VX + X:
VT X, VXI+ X+ X

The necessary and sufficient condition for X, to be mormal distri-

(29) V.=
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buted with o common standard deviation is that V, and V, are inde-
pendent distributed according to the demsities

1 1
I S 1
hv) =1{ 7 V1I—1 for Jv] <
(30) 0 elsewhere
P
A 0 1
/zg(v) = (1/1 — fOT SUS
lO elsewhere .

Proof. The necessary condition is obvious, In order to prove the
sufficient condition let us put

_ vy v _ VYTV

31 _ -
31) YTV YIr v T VIF Yiy Y

where Y, Y, are given by formula (5). It is easy to see that if
(V,, V.) are independently distributed according to (80), then (Y;, Y,)
is distributed according to the density (26). Using Theorem 3 it is
easy to see that all X, are normal distributed with a common stand-
ard deviation. This ends the proof.
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