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The results in M. J. LighthiϊΓs book, Fourier Analysis and
Generalized Functions, dealing with the asymptotic develop-
ments of Fourier transforms and Fourier series coefficients,
are extended to the ^-dimensional case. Together with several
theorems due to L. Schwartz's work on distribution theory,
integral representations and asymptotic developments of the
^-dimensional discrete (generalized) polyharmonic Green's func-
tions, are then obtained. A few examples of these Green's
functions are illustrated and compared with known results.

With a considerable simplification of L. Schwartz's Theory of
Distributions [6], Lighthill [4] has developed through the theory of
generalized functions of a single variable, an asymptotic technique
which leads quickly to estimating asymptotically Fourier transforms
(F.T.). This technique was also applied without change, to the
asymptotic determination of Fourier coefficients in trigonometrical
series.

In the papers by Duffin and others [1-3], classical techniques
were employed to estimate asymptotically two and three dimensional
Fourier transforms. These techniques were then applied to determine
the asymptotic behavior of discrete harmonic and biharmonic Green's
functions. However, only the leading asymptotic terms of the n-
dimensional discrete polyharmonic (p > 3) Green's functions, were
obtained.

This paper is primarily concerned with the extension of LighthilΓs
one-dimensional asymptotic theory into ^-dimensions. Using this ex-
tension, together with several results due to L. Schwartz, a method
for obtaining all the terms of the asymptotic expansion of the n-
dimensional discrete polyharmonic Green's functions, is derived. Known
results [1-3] and more generalized ones concerning these Green's func-
tions, are noted here.

Since the concern here is with functions of n independent vari-
ables, the following notations and conventions, unless otherwise
specified, will be employed:

X = (Xlf X2y , Xn) ,

a = (au α2, , αΛ) ,

x/2k = (xJ2ku x2/2k2i , xJ2kn)
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r = \x I = (xl + x\ + . . + χ2

nyι* ,

J p = —
dx{ιdxl2

 3#£TO

Sf(α) = F.T.[/(»)]

c n = c m i l B 2 . . . M B ,
Oβ CO OO

Finally, / will designate a generalized function whereas /* will
represent an ordinary function.

2* The asymptotic estimation of Fourier transforms in n*
dimensions. An ^-dimensional asymptotic method involving F.T.'s is
developed here. The method involves writing a given function f(x)
as f(x) = F(x) + fB{x), where F(x) is a simpler function whose F.T.
G(a) is known, and fR{x) is a remainder such that F.T. [ApfB(x)] —> 0
as k—> oo. Then, g{α) = F.T.[/(a?)] satisfies

g[a) = G(a) + flrΛ(α) = G(a) + o{k~v)

as fc —> c>o. To develop such a method, a simple technique of identify-
ing functions whose F.T/s tend to zero as k-^oo, is needed. The
Rieman-Lebesgue lemma as we know, is the classical result which does
this for ordinary integrable functions.

By means of the following two definitions, the Rieman-Lebesgue
lemma may be extended to generalized functions.

DEFINITION 2.1. For a generalized function f(x), any statement
like f(x)-+0,f(x) = O[h(x)]9 or f(x) = o[h(x)] as x->c ( o r ^ c o )
means that f(x) is equal in some ^-dimensional parallelepiped x — c
(or outside some ^-dimensional parallelepiped containing | α̂  | > pi9 ί =
1, 2, * ',ri) to an ordinary function f*(x) satisfying the stated con-
dition.

DEFINITION 2.2. If f(x) = f*(x) in the π-dimensional parallelepiped
P: c3 < Xj < dj, j =1,2, , n, and /*(α?) is absolutely integrable there,
then we say that f(x) is absolutely integrable in P.

By use of the above two definitions, the extension of the Rieman-
Lebesgue lemma to generalized functions, follows immediately.

To obtain a criteria for estimating asymptotically F.T.'s of gener-
alized functions, the following definition will be used.
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DEFINITION 2.3. The generalized function f(x) is said to be "well
behaved at infinity", if for some number R, the function f(x) — F(x) is
absolutely integrable over the region | x1 | > R, \ x2 | > R, , | xn | > R,
where Fix) is absolutely integrable in every finite region and G(a) =
F.Ύ.[F(x)]-+ 0 as fc->oo.

THEOREM 2.1. // a generalized function f(x) is "well behaved
at infinity" and absolutely integrable over every finite region of
En, then its F.Ύ.g(a)~->0 as &->oo.

Proof. Consider F(x) — f(x), where F(x) is the function defined
in Definition 2.3. Since both f(x) and F(x) are absolutely integrable
in every finite region of En, so is f(x) — F(x). Furthermore, by
Definition 2.3, f(x) — F(x) is absolutely integrable over the region
I xό I > R, j — 1, 2, , n. Hence, f(x) — F(x) is absolutely integrable
in the entire En space. Thus, in view of Rieman-Lebesgue lemma
for generalized functions, F.Ύ.[f(x) - F(x)] = [g(a) - G(α)]-* 0 as
k-^ coβ But G(a)—>0 as k—• oo by Definition 2.3. Therefore, g(a) =
F.T.[/(α)]-> 0 as A:—oo.

DEFINITION 2.4. A generalized function is said to have a finite
number M of singularities at the points Ql9 Q2, , QM, if in any region
G c i?% not containing any of these points, f(x) is equal to an ordinary
function with partial derivatives of all orders at every point of the
region.

THEOREM 2.2. Assume the following:
( i ) f(x) has M singularities at the points Qu Q2i , QM and

Λpf(x) where p = px + V* + + pn, is well behaved at infinity.
(ii) For m = 1, 2, , M, Λp[f(x) — Fm(x)] are absolutely in-

tegrable in a region containing Qm but no other singularity. Also,
ApFm(x) are absolutely integrable in every finite region not contain-
ing Qm and are well behaved at infinity.

(iii) Let N be a positive even integer and let pu p2, , pn above
hold not only for a single n-tuple but for all such n-tuples with
Pi + P2 + + Pn = N. Then,

g{a) = F.T.[/(s)] - Σ GJa) + o{k~») as k^ oo ,
(2.1) m = l

Gm(a) = F.Ύ.[Fm(x)] .

Proof. Defining fR{x) = f(x) - %f FJx) whose F.T. is gR{a), then
by 15] or [6],
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(2.2) F.Ί.[A*fB(x)] = (2πia1)^(2πia2)^ . . . (2πian)*»gB(a) .

Next, ApfB(x) is absolutely integrable in a finite region containing
Qm but no other singularity. This is so because Ap[f(x) — FJx)\ is
absolutely integrabίe in the same region as are

A*Fλ{x), Λ*F2(x), .-iΛ'F^ix), A*Fm+1(x), . . . , A*FM(x) ,

by hypothesis. Since this is true for m = 1, 2, , M, it follows that
ApfR(x) is absolutely integrable in every finite region of £7*. Further-
more, since each ApFm(x) and Apf(x) are well behaved at infinity by
(ii), so is ApfB(x). Thus, by Theorem 2.1,

F T [ ZlP-f ('rλl — (9^rrΊΠ \PU9τri'π \P2 . . . (9τria \Pnn (π\ • > 0. _L . \J-i- J R\w) J — yΔiJL v\λ>ij yΔiil v\λ/2) y^jJL v\λιn) \JR\^>) ^

as k—> °o( i.e.,

(2.3) lim (2πiα1)«(2πiα1)» (2ττmM)ί'»Γg(α) - £ Gm(α)Ί = 0
k—>oo L m = l J

Using now hypothesis (iii), then

lim X — — j — : apap • ap

n4g(a) - X Gm(α)|

(2.4)

= \im\k"{g(a) - Σ Gm(α)}l = 0 .
A;->oo L I m=l ) J

3* Asymptotic expansion of ^-dimensional Fourier coel>
ficients* In dealing with Fourier coefficients of generalized periodic
functions, integration according to [4, 5], must be carried out over
the entire En space, rather than over the period parallelepiped as
done ordinarily with ordinary functions. To overcome this, one can
extend LighthilΓs "unitary" function [4] into π-dimensions and then
utilize it to show the equivalency of the two schemes. The exten-
sion goes as follows.

LEMMA 3.1. // V^x^), V2(x2), •••, Vn(xn) are one dimensional
unitary functions in LighthilΓs sense, then

V(x) = VάxdVfa) ~ Vn(xn)

is a good (testing) function [5, p. 3] satisfying
( i ) V(x) = 0 for I x3-1 *> 1, j = 1, 2, . . . , n,

(3.1) (ii) Σ V(x + m) = Σ V,(x, + mx) V,(x± + m2) . . Vn(xn + mn) - 1

for all x,
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(iii) W(a) = F.Ύ.[V(x)] is such that W(0)= 1 but W(m) = 0 if
otherwise.

Proof. The proof follows immediately from the definition of V(x)
and the proof of Lighthill [4, p. 61].

The idea of integrating a generalized periodic function f(x) over its
period 2k can now be replaced by the idea of integrating f(x)V(x/2k)
over the entire En space. This is so because each value of f(x)
which also equals f(x + 2k) is multiplied by just ^m V(m + x/2k) = 1.

Since the primary concern here is with asymptotic estimates of
Fourier coefficients, the following three useful theorems which are
well known in classical theory, will be stated without proofs (their
proofs for generalized functions are found in [5, § 3]).

THEOREM 3.1. The multiple trigonometrical series

(3.2) X Cm exp [πi(m x/k)]
mi

converges to a generlized function f(x), if and only if, Cm — O(\m\N)
for some N as \ m | —•* OΌ f in which case

(3.3) g(a) = F.T.[/(x)] = £ CJ(a - mj2k) .

Here d is the n-dimensional dirac delta function.

THEOREM 3.2. If f(x) = J^m. Cm exp [πi(m x/k)]9 then

Cm - (1/2^A . kn)[° . . . \f(x) V(x/2k)

x exp [—πiim x/k^dxjdxz dxn .

THEOREM 3.3. If f(x) is any periodic generalized function with
periods 2ku 2k2, , 2kn in xu x2, , xn, respectively and if Cm is as
stated in Eq. (3.4), then

(3.5) f(x) = ΣC™ exp [πi(m-x/k)]

and

g(a) = F.T.[/(a;)] = Σ CJ(a - m/Zk)
(3.6) mi

mi

COROLLARY. Under the hypotheses of Theorem 3.3, Cm = O(\ m \N)
for some N as |m|—> oo. This follows from Theorems 3.1 and 3.3.
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We wish to apply now the asymptotic method of §2 to the
asymptotic estimation of Fourier coefficients. To do so, the following
theorem is needed.

THEOREM 3.4. // f(x) is a generalized periodic function with
periods 2ku 2k2, , 2Jcn, in xu x2, - —, xn respectively, then

(3.7) C(a) = F.T.[(1/2*A;A kn)f(x) V(x/2k)]

is a continuous function whose value for αx = m1/2k1, , an — mn/2kn,
is the Fourier coefficient Cm of f(x), i.e., C(m/2k) — Cm.

Proof. It is well known [6] that one may take the F.T.'s of an
infinite series of generalized functions, term by term, i.e., C(a) may
be obtained by taking the F.T. of

(1/2^Λ . . . kn) X Cm exp [πi(m.χ/k)] V(x/2k) ,

term by term. Thus, C(a) = ΣιmίCmW(2k-a — m), which is an abso-
lutely and uniformly convergent series of continuous functions in any
finite region. This follows from the corollary above and from the
fact that W(2k a — m) is a good (testing) function in view of Lemma
3.1. Hence, C(a) is a continuous function. The second part of the
theorem follows from property (iii) in Lemma 3.1.

If a periodic generalized function f(x) has any singularities, it
has an infinite number. However, if f(x/2k) has a finite number of
singularities, then Theorem 3.4 shows that the methods of § 2 may
be applied to determine the asymptotic behavior of C(a) and there-
fore of Cm.

DEFINITION 3.1. The periodic generalized function f(x) with
periods 2kl9 2k2, , 2kn in xl9 x2, , xn, respectively, is said to have
a finite number M of singular points Ql9 , QM, in the ^-dimensional
parallelepiped — kά < xό g kj9 j = 1, 2, . n, if, for some εά > 0, f(x)
is equal to an ordinary function differentiate any number of times
in the region S — T. Here S is the region {~kό < xά g k^l + eά),
j = 1, 2, . , n,} and T = {Ql9 Q2, . . , QM).

Using Definition 3.1, the following important theorem follows.

THEOREM 3.5. Let f(x) be a generalized periodic function with
singularities at the points Qu Q2, , QM, in the period parallelepiped:
— kj < x3- ̂  kj, j — 1, 2, , n. Let also

( i ) for each m = 1, 2, , M, Λp[f(x) — Fm(x)] is absolutely in-
tegrable in a region containing Qm but no other singularities,
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(ii) for each m = 1, 2, , M, ΛpFm(x) is absolutely integrable
in every finite region not containing Qm and is well behaved at
infinity.

(iii) Let N be an even positive integer and p = (pu p2, , pn)
above holds not only for a single n-tuple p but for all such n-tuples
with px + p2 + + j>Λ = N. If Gt(a) = F.T.[Ft(x)], then

(3.8) Cm = (1/2^Λ .. kn) Σ Gt(m/2k) + o(\ m |-*)

as I m j —» co .

Proof. Take the "unitary" function V(x) in Theorem 3.4 to be
defined as

V(x) = 1 for - ( 1 - εy)/2 ^ a?y ^ (1 + ε,/2)/2

= 0 for ^ g - ( 1 - ε ^ ) ^ or ay ^ (1 + 6y)/2 ,

Here εy are those of Definition 3.1 assumed chosen so small that
every singularity in the period parallelepiped is such that x3

m ( = jth
coordinate of Qm) > —k3(l — ε̂  ). One such "unitary" function is
V(x) Ξ V^x^V^Xc,) ••• Vn(xn), where each F ^ ^ ) is taken in LighthilΓs
sense. Then, (l/2nk1k2 kn)f(x) V(x/2k) is a generalized function with
only the singularities Qu , Q* and equals (l/2%fe1fe2 kn)f{%) in the
^-dimensional parallelepiped:

-fc,.(l - ε, ) < x5 < kά(l + e,-/2) , i - 1, 2, . . . , n ,

including all of them, and all its partial derivatives are "well behaved
at infinity". This is so since they all vanish outside the region
I x3-1 > ^.(1 + es), j =1,2, , n. So, the F.T. by Theorem 2.2 satisfies

lim αfiαja α Γc(α) - (1/2*^ ftw) Σ ^(α)] - 0 ,
A->oo L ί = l J

or in view of Eq. (3.7),

lim a\mψ . . . apAcm - (1/2%&Λ . . . kn) Σ Gt(m/2Λ)1 - 0 .
|mh« L t=l J

The theorem therefore follows from hypothesis (iii).

4* The asymptotic development o£ discrete poly harmonic
Green's functions* In applying the theory developed in § 3 to
the asymptotic development of discrete polyharmonic Green?s func-
tions, the following is noted. According to Theorem 3.1, a discrete
function μ(x) may be identified with the coefficients Cm of the Fourier
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series of a generalized periodic function, if and only if, μ(x) = O(rN)
for some N as r —-> °o. Conversely, by Theorem 3.3 and its corollary,
the Fourier series representation of any generalized periodic function
f(x), defines a discrete function which is O(τN) for some Λfasr—>oo.

The poly harmonic difference operator Dp is defined by

DU(mu m2, , mn)

= U{m1 + 1, m2, , mn) + [/(mi — 1, m2? , mw) +

(4.1) + U(mlf m2 + , mΛ + 1) + ^(m^ m2, , mΛ — 1)

- 2nU(m1, m2, •••, mΛ)

Dp+1U(m) = Dp[DU(m)] , p = 1, 2, .. .

The following relation may easily be verified

(4.2) Dp{exp [—2πi(m-x)]} = exp [—27ri(m•»)](—4 Σ sin2 πxλ* .

THEOREM 4.1. Lβί r̂(a ) 6e a periodic generalized function with
period 1, i.e.,

(4.3) g(x) = Σif*™ e χ P

If the discrete function μm is a fundamental solution for Dp (i.e.,
Dψm = <?m = 1 if m = 0; 0 i/ m Φ 0),

(4.4) (-4 φ sin2 πx^*g{x) - 1 .

Proof. By hypothesis, Theorem 3.2, and relation (4.2),

.[^)F(x)]}

?) V(x) exp [—2πi(m-x)]dx1 - - - dxn

(4.5) U J

x exp [—2πί(m x)]dx1dx2 dα;w .

Next, (—-4 ΣΓsin2 TΓX̂  )^^) is a periodic generalized function, since
g(x) is. Hence, the result follows by Theorem 3.3. Indeed,

— 4 2 sin2 ττ#i) flr(ίu) = 2 δm exp [2πi(m x)] — 1 .
1 / mi

By means of a "Laurent-type" expansion, one may define
Γ sin2 π^-)"2' as follows:
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DEFINITION 4.1. In the region

B : I x3- \<l,j = 1,2, '•',%, [Σ s i n 2 π x ό

has the following Laurent-type expansion

Σ

(4.6) - (jr/r)1

L

+ ί5(p

1

% \ / n

where

m

(4.7) Am = (-1)»+1 Σ [(2i - 1)! (2m - 2j + I)!]-1 ,

m = 1, 2, etc.

Proof of consistency. The first term of the expansion, (τrr2)~p,
is a generalized function defined by L. Schwartz [6] as the solution of

(4.8) (πr)2*f(x) - 1

such that F.T. [/(&)] is given by Eqs. (4.13) and (4.14). The series
in the curly parenthesis of Eq. (4.6) converges uniformly everywhere
in the region B. Hence, expansion (4.6) satisfactorily defines the
generalized function Q ^ sin2 πx3)~p in the region B.

We can therefore say now that the generalized function
(—4 Xί sin2 π^-)~p is a solution of (—4 ^sin2nxd)

pg(x) = 1 in the
interior to the region B.

The discussion above together with Theorems 3.2 and 4.1, lead
to the following important representation:

THEOREM 4.2. A fundamental solution μm for the poly harmonic
difference operator Dp is given by

(4.9) μm - F.T.[(-4 Σ si

Note. This particular solution will designate the so-called "normal-
ized" fundamental solution or the discrete Green's function gp(a) corre-
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spending to the ^-dimensional polyharmonic difference operator Dp.
In relation to expansion (4.6), let us note first that the only

singularities of (Σϊ sin2 ττxj)'~p or of its partial derivatives in the
region | xό | < 1, j — 1, 2, - , n, are at the origin. Next, only a
finite number of them are singular at the origin. This is so because
the limit as r —> oo of the successive terms of the series in the curly
bracket of (4.6), are increasingly higher orders at zero. Thus, in
view of the discussion above and Theorem 3.5y the following result
is valid.

THEOREM 4.3. Let

(4.10) h(a) = F.T.[(-4)-*(φ hά{x)j\ ,

where hj(x) are all the terms of the series (4.6) which are singular
at the origin. If gp(a) = μm is the discrete Green's function for
Dp defined in Eq. (4.9), then

(4.11) gp(a) = h(a) + o(l) as k~^ oo a

Proof. This theorem is just a direct application of Theorem 3.5
for N=Q,M=1 and F,(x) = (-4)-' χ{ hό{x).

Next, since the successive nonsingular terms of the series (4.6)
(after a finite number I say) have zeros of higher order at the origin,
Theorem 3.5 may be used again to obtain the asymptotic expansion for
gp(a) to any desired order by taking more terms in the series (4.6).

THEOREM 4.4. If H(x) = Σ?>1 hό{x) extended to include not only
the singular terms of the expansion (4.6) hut also terms with zero
at the origin of order s or less, the for an appropriate s,

(4.12) gp(a) = F.Ύ.[H(x)] + o{k~N) as k — oo .

Proof. For an appropriate s, the conditions of Theorem 3.5 can
be satisfied for any positive even integer N.

Theorem 4.4 reduces the problem of finding the asymptotic
estimates for gp(a) to the problem of finding the F.T.'s of the
functions appearing in Eq. (4.6). These functions are of the type
of a polynomial divided by r to an even integral power.

L. Schwartz [6, Vol. II pp. 113-114] has computed the following
expressions:

(4.13) F.T.[r-m] = π*-«ι*
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when n is odd, or when n is even but m < n; p — 1, 2, etc.

F.Ύ.[Έ>.Y.(r~n~2h)] = (-l)h2π2h+n'2[h! Γ(h

> c J + λ(i + λ + + λ
+ 1 + + +

& rfc + 2 V1 + 2 + + A 7 + 2Γ(h + */

where n is even but m — w = 2Λ ̂  0? A = 0, 1, 2, , and where
1 + (1/2) + (1/3) + + (I/A) is replaced by 0 if A = 0. 7 is Euler's
constant. The F.T/s taken in Eq. (4.14) are in the principal value
(P.V.) sense because of the logarithmic singularity involved at the
origin. One may take explicit expressions for F.Ύ.[P(x)r~2m], where
P(x) is a polynomial, as follows: if P(x) — Σ)=o CmxV j x9

n»j, then

F.Ύ.[P(x)r] = Σ Ci(

Qid + Q23 + + Qnj = 9 .

Having established relation (4.15), the asymptotic expansion of
gp(a) may now be evaluated explicitly to within o(Λ~iχr) as k —> 00 for
any even positive integer N, by computing the F.ΊVs of the series
(4.6), by means of Eqs. (4.13)-(4.15), term by term. For simplicity
and in order to compare the results here with those which are known
[1-3], only the first two terms of the asymptotic expansion will be
calculated below.

From Eqs. (4.12) and (4.6) with A= -1/3 and from Eqs. (4.13),
(4.15), the following holds.

THEOREM 4.5. // the dimension n of the space is odd, then

gp(aly α2, , an) ~ Bp,nk^~n - JLBp+ltnk"-*m(m - 2)

(4.16)

x [("-4X™-β>φα} + (6m - 24 + 8*)] ,

where

DpΓ(-p + n/2)
2?*πnl\p - 1)!

and m = 2p + 2 — n.

Note. Relation (4.16) is also valid when n is even but 2p < n
for the leading asymptotic term and 2p + 2 < n for the second
asymptotic term, etc.

EXAMPLES.
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9l(ai, α,, α3) ~ - -±- - ^ _ [ - 3 + | ( α ί + α* + at)] ,

Λ(α l f α2, α3) ~ - A + * Γl + ^ + g + <1 ,
8ττ 64τrfc L &4 J

(αlf α2, α8> α4f αβ) ~ - - i L _ Γ - 1 5 + 35 ( α* + α ί + "

(αlf α2, α3, α45 α5) ^ - J _ + 1 Γ - l + 5 ^
K lβτr 2 fc 1287Γ2&3 L A:4

lf α2, α3, α4) ̂  ! J Γ l 2(αj + -! _ _ _J_Γl + 2(αj + - + αί)1.
2k2 A π W L fe4 J

The first example above agrees with the result obtained by Duffin [1]
except for sign. The difference in sign is due to the difference in
the definition of fundamental solutions being defined here by the
equation Dpμm — δm and being defined in Duffin's paper by Dpμm =
(~l)%Sm. The remaining examples were not obtained previously.

Now, from Eqs. (4.12) and (4.6) with Λ> = —1/3 and from Eqs.
(4.14) and (4.15), the following asymptotic expansion holds.

THEOREM 4.6. If the dimension n of the space is even but
2(p + i) — w = 2λ ^ 0, A = 0, 1, 2, (j = 0 corresponds to the first
asymptotic term and j — 1 corresponds to the second term), then

gp(al9 α2, , an)

- (-4)-pF.T.Γp.V.{(τrV2)^|l + pπ2 φ Wδ

- 1)! (p - n/2)l

x

2 p-n/2 J 2Γ(p)J

- 1)! (p + 1 - n/2)l

m - 1) + 6(3m2 - 12m + 8)

71 4 )

+ 4(7^3 — 9m2 + 22m — 12)-ϊ—-Γ
(4.17) k* j

+ km~4 log k\2nm(m — 2) + 6m(m - 2)(m — 4)

n

Σ c

+ m(m - 2)(m - 4)(m - 6)-^—
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Σ4
- 2)1 (m - 4)(m - 6)-i + (6m - 24

1 A:4

x \hgπ -Ml +
v 2 \2 \ 2 p + 1 - n/2

Γf(p

where 7 is Enter's constant,

m = 2p + 2 — n , 1 + —
2 _ n

in the first term is replaced by zero if m — 0.

EXAMPLES. By use of Theorems 4.4 and 4.5, we obtain:

g1(au α2) ̂  [log (πk)

3 Π o g (7Γ&) + 7 - 1 ]
O7Γ

gt(alt α2, α3) α4) ~ - A . [log ̂  + 7 - 1/2] + ai + ̂ g + α- .
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