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Througheut this paper G denotes a locally compact group
and {H,} denotes an increasing sequence of closed subgroups
of G whose union H is dense in G. For each n, 4, denotes the
modular function on H, and 4 denotes the modular function
on G. Then lim, 4.(z) = 4(x) for each xc H. For each n, 1,
denotes a left Haar measure on H, and 1 denotes a left Haar
measure on (G. For a function f on G and an z in G, ,f
denotes the function ,f(y) = f(zy). The main theorem states
that if 4, is the restriction of 4 to H, for all sufficiently
large 7, then there is a ‘‘normalizing’’ sequence {a,} of posi-
tive numbers such that for every f in $:(G,2)

(1) mnang ,fdxnzggfdz

H'Ib
for Z-locally almost all x in G. The hypotheses regarding the
4.’s and 4 hold in all cases known to the authors. In par-
ticular, they hold if the H,’s are unimodular (hence if they
are Abelian, compact, or discrete) or if the H,’s are open
subgroups or normal subgroups. If G is the compact group
[0,1] with addition medulo 1, if the H,’s are the finite groups
{£27": 0 < k < 2 — 1} with counting measure 1,, and if a, = 27",
then the left side of (1) is a Riemann sum and (1) becomes
Jessen’s theorem.

Jessen’s theorem [10] states that if f is a function on the real
line that has period 1 and is Lebesgue summable on [0, 1], then

(2) lim 25 /(w0 + L) = | rw ay

for almost all « in [0,1]. Jessen observed that in proving (2) he
actually proved that

My—1 1
(3) Iim——2f<x+ k):Sf(y)dy a.e.
n Mm, k=0 m,, 0

for any sequence {m,} of positive integers where m, | m,,, for all =,
Since such sequences {m,} correspond to all possible increasing sequences
of closed subgroups of [0, 1], the generalization stated in (1) gives no
new information about the case G = [0, 1],

Relation (3) fails for some functions in £,([0, 1[) in the case that
m, = n, This was shown by Marcinkiewicz and Zygmund [12] and
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136 KENNETH A. ROSS AND KARL STROMBERG

by Ursell [15]. Rudin [13] showed that there are many sequences
{m,} and bounded functions f in %[0, 1]) for which (3) fails and his
strong negative theorem emphasizes that the divisibility properties of
the m,’s are crucial in Jessen’s theorem. These results show that
(1) cannot be proved for an arbitrary sequence {H,} whose union is
dense. Salem [14] gives a generalization on [0, 1[ of Jessen’s theorem:,
Another generalization is given by Civin [3].

Notation and terminology not explicitly defined here can be found
in [8] or [9]. The first theorem contains a number of equivalent natural
conditions any of which could serve as the definition of a “normalizing
sequence”, We make a formal definition after the theorem.

THEOREM 1. For a sequence {a,} of positive numbers, the follow-
ing conditions are equivalent:

(i) lim, ang fudn, = S fidn
2, a
for some nonzero f, in C3(G);
(ii) lim, ang fn, = SG far
Hy
for all feGyG);
(i) lim, e (U, N H,) = MUy)
for some monvoid open set U, in G such that U, s compact and
Mbdry U,) = 0;
(iv) lim, a .\, (UNH,) = NU)
for all open sets U such that U~ is compact and Nbdry U) = 0.

Proof. (i) = (ii). There is an he H such that fy(k) = 0. Then
WS(f)(e) = 0 and (i) is satisfied by ,(f,). We select a sequence {3,}
such that

(1) 8. Ln NN ALY

for all n; clearly lim, 8,a;' = 1. We now use the fact that if {H,}
is a net of closed subgroups converging to a closed subgroup H, in the
sense of Hausdorff and if the Haar measures A, on H, are normalized
so that g gdhy = S gdx, for some ge €}, where g(e¢) # 0, then

): ¥ )2 )

(2) lim L fdn, = jﬂo Fdn,

for all fe@,. This is due to J. M. G. Fell; see the appendix to [7];
the proof uses an earlier result of Fell [5]. This fact is also proved
by Bourbaki [1] (in §5) and by Flachsmeyer and Zieschang [6]

1 Such sets U are sometimes called “continuity sets for 2”.
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(Satz 1).2 Clearly G is the limit of the sequence {H,} in the sense
of Hausdorff and relation (1) is a special case of (2). Therefore

lim, 8, SHﬂ fdn, :L fdr

for all fe@,. Assertion (ii) follows from this since lim, 8,a,;' = 1.
(ii) = (iv). Let U be an open set such that U~ is compact and
Mbdry U) = 0. If fe@, and f = &,-, then

lim sup, e\ (U N H,) < lim, a, S fdn,
H’ﬂ
= S fdx .
@
Since
MU) = MU) = inf {| fdr:re6, fze),
we obtain
lim sup, .\, (U N H,) = MU) .

A similar argument using
MU) = sup{| fdr:fe6,, £ = &)

shows that
MU) = liminf, o\ (U N H,) .
(iv) = (iii) is obvious.

(iii) = (i). Let f, be any nonzero function in €f. Clearly there
is a sequence {8,} of positive numbers for which

(3) lim, 8, Ln fodn, = SG fudn .

The already proved implication (i) = (iv) applied to {8,} yields

By supposition

2 Yet another proof, which uses the Hahn-Banach theorem, can be given for this
result. There are at least two other proofs for the compact case. One uses the fact
that the semigroup of probability measures on G is compact in the weak-* topology
and the other uses the fact that lim, anin = A pointwise where 7. and 2 are the
Fourier-Stieltjes transforms on the space of equivalence classes of irreducible unitary
representations of G.
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hmn an)’n( UO m Hn) = >\’( UO)

and it follows that lim, a,8;' = 1. This equality and (8) imply that
(i) holds for {«,} and f,.

As noted in the proof of Theorem 1, sequences {«,} satisfying (i)
always exist trivially, If G is compact and if ), (H,) = MG) for all
n, then all the conditions of Theorem 1 hold for the sequence «, = 1.

DEFINITION. A sequence {«,} satisfying the equivalent conditions
of Theorem 1 is called a normalizing sequence for the family
{N, Ay Ny, <} of left Haar measures,

It is easy to prove that if {«,} is a normalizing sequence, then
another sequence {8,} of positive numbers is a normalizing sequence
if and only if lim, «,6;* = 1.

The next two theorems tell us more about normalizing sequences,

LEmmA 1. If {a,} ts a normalizing sequence and if F 1is a
compact subset of G, then there is a finite constant cp, depending
only upon F, such thaot

(i) ar(xFNH,=cy
for all xeG and all w. The constant c¢, can be taken to be
sup, a N, (F'FNH,)?

Proof. Choose g in € such that g = &z-15; then
cp = sup, N (F7'F N H,) = sup, «, S gdn, < oo .
Hﬂ

Consider any 2 and n. If /"N H, = @, then (i) is plain. Otherwise
xa = h for some ae F and he H,. Then

an@F N H,) = a, S Eunh,
Hy,
= an S (Sa—lF)d)\"ﬂ
H, b1

= an S Ea"lek'n é an S EF_IFd)\’n é cF .

n H%

NotaTiON. For the remainder of the paper, whenever F is a
compact subset of G, ¢, will denote the constant in Lemma 1. If G
is compact and ), (H,) = MG) = 1 for all n, then we take «, =1 for
all » and ¢, = 1 for all F.

3 The existence of ¢y can also be deduced from the proof of Fell’s theorem [7]
or from Hilfssatz 1 of [6].
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THEOREM 2. Let {a,} be a normalizing sequence. If fe€u(G),
then

(i) lim, e, S Fdn, = Lfdx

n

and
(i) lim, anS fodn, = A(:rl)g Fdn
a2, @
uniformly on compact subsets of G,

Proof.* The pointwise convergence of (i) and (ii) follows from
Theorem 1. Let F' be any compact subset of G. An Ascoli theorem
(Theorem 15, page 232 of [11]) states that pointwise convergence im-
plies uniform convergence on compact sets provided that the functions
involved belong to an equicontinuous family of functions. Thus it
suffices to prove that the family of functions consisting of all

¢n(x):awg _fdn, and all q/f”(:c):ang F.dn,
o, Hy,

is equicontinuous on F. Let I be a compact sef containing the sup-
port of f. Let ¢ = ¢pypr—1; by Lemma 1,

aN((EUEFYNH,)Z ¢

for all x and n. Given ¢ >0, select a neighborhood V of the identity
e such that xy~'e V implies ||,f — ,fll. <¢/2¢ and ||f, — f,ll. < &le.
Then zy~'e V implies

0@ = pu@) | S| 1F = ufl
- an SH |:cf - z{f' Sx_lEUy_lEdkn

s an@ENH)+-San@ENH)=S¢;
2¢ 2¢

if, in addition, = and % are in F', then
| "/fn(x) — )| = a, SH | fo — Tyl Eprdh,

=S aN(EF'NH,)=s.
Cc

TurEOREM 3. Let {a,} be a normalizing sequence. Then G/H, is
compact for some n if and only if

4 The proof for compact G was kindly given us by Thomas Paine.
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(i) lim, ang S, = S Fdn
H, @
uniformly on G for all fe € (G).

Proof. Let ¢,(x) = a, S JdN, .
HVb
Suppose that G/H, is compact for some 7, Then there is a
compact set F' in G such that FH, = G for all n = n,; see 5.24.b of
[8]. By Theorem 2 there is an %, = %, such that |{¢,(y) — S fdk' <€
q

for all yeF and n=n,, Forany z in G and n = n, « = yh for
some ye€ F and A e H, and hence

s =a| g =af i

= a, Ln wJaAN, = ¢.(Y) .

It follows that lngn(x) — S fd)»l < ¢ for all ze G and n = n,.

Suppose now that (i) ilolds. Let f be a nonzero function in €F
and let F' be a compact set containing its support. Since | fdx > 0,
there is an n such that «, Jdn, >0 for all ze@. Tahen xe @

implies that ,f(4) = 0 for somgnheHm hence 22 ¢ F and xec FH;.
Therefore G = F'H, and G/H, is compact,

The next theorem relates the modular funection on G to the
modular functions on the H,’s.

THEOREM 4. If F 1s a compact subset of some H,, then
lim, 4,(x) = 4(z) wniformly on F. In particular, lim, 4,(x) = 4(x)
for all xc H,

Proof. Let {a,} be a normalizing sequence and let f be a nonzero
function in €. By Theorem 2, we have

lim, An(x)anS fdn, = lim, anS fovdn,
Hn n
— A(m)s Fdn
G
uniformly on F. Since

lim, e, g fdn, = S fdn =0,
a, ¢

we infer that lim, 4,(z) = 4(z) uniformly on F.
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Note that 4, = 4| H, whenever H, is a normal subgroup of G;
see 15.23 of [8]. If H, is not normal, then the identity 4, = 4| H,
may fail to hold. It seems unlikely that 4, = 4| H, must hold for
sufficiently large n, but the authors unfortunately have not been able
to produce an example to settle this question. Further comments
about this question follow Theorem 5.

We next prove two lemmas that are needed in order to prove in
Theorem 5 our main result, namely, our generalization of Jessen’s
theorem, The first lemma is a consequence of a result of Edwards
and Hewitt [4].

LemmA 2. Suppose that {¢,} is a sequence of nonnegative Borel
measures on G. Then, for every feR(G,)\), .f is p,~measurable
Sfor N-locally almost all xc G. Suppose also that

(i) limnS fdp, = S Fdn
Jor all fe @Oo(é) and tlmGt

(ii) supng JAp, < oo n-locally a.e.
for all fe ST(GG, N). Then

(iii) 1imng dp, :S fdn A-locally a.e.
for all fe 531(G(,; ). ’

Proof. In their Theorem 1.6, Edwards and Hewitt [4] prove the
following, Suppose E is a real semimetrizable topological vector space
of the second category and that (S, 7, ¢) is a measure space. Let
% be the family of all _~measurable functions from S into [0, o],
where any two functions in § that are equal p-locally almost every-
where are identified. Suppose {P,} is a countable net of sublinear
operators from E into § satisfying

(1) for each a, lim,f,=f in E implies that lim, P.f., = P.f p-
locally a.e. for some subsequence {f, } of {f.},

and
(2) Pf(s) = sup, P.f(s) is finite p-locally a.e. for every fe K.

Let E, be the set of f in E for which lim, P,f(s) = 0 p-locally a.e.
Then K, is a closed vector subspace of E.

It suffices to prove (iii) for f in &;(G). Let E = & and, for each
positive integer m and fe ¥, let

P, f(x) = ISfodpm— ngdx| for zeG .
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Suppose that G is o-compact. If 4 is a »-null function on G, then | 2]
is dominated by a Borel measurable A-null function k2. Then (z, y) —
k(xy) is Borel measurable on G X G and an application of Fubini’s
theorem (13.9 of [8]) shows that .k is pg,-measurable for \-almost all
x and that \ ,kdy, is M-null. The same remarks thus apply to 4.
G
A similar application of Fubini’s theorem shows that S JAM, 18 -
q

measurable for any fe (G, ). Therefore P, f is A-measurable and
is well-defined in the sense that if f = g »-a.e., then P,f = P,g in {.
If G is not o-compact, the same statement can be proved by making
a similar argument on its open o-compact subgroups. It is easy to
see that each P, is sublinear:

Plaf)y=|a|P.(f) and P(f+g) =P, f+ P,g

Alocally a.e., where o is real.
To prove (1), fix m and suppose that lim, || f, — fil. = 0 where f

and each f, belong to &. Since limng fndk:S fdx, it suffices to
23 &
prove that the sequence

si@) = || Arodp — | .rde,

of functions has a subsequence that converges A-locally a.e. to 0.
For positive integers k, choose n, so that [|f, — f,<47* and let

g =22 f, — f|. Then g belongs to & and S gdp, exists and
g g
is finite A-locally a.e. For any x such that S gdp, < o, we have
a

=2 g 9 A,
G

5, 0) = || F, — e

and hence lim, s, (x) = 0. This proves (1), and (2) follows immediately
from (ii),

Let E, consist of all f in & such that lim, P, f(x) = 0 \-locally
a.e. Hguivalently E, consists of the funections in ¥ for which (iii)
holds and so we need only prove that E, = &. For any fe @€ and
xe G, (i) applied to ,f shows that lim,, P, f(x) = 0. Therefore C},C E,;
the theorem of Edwards and Hewitt asserts that E, is closed in &
and hence E, = 7.

Lemua 3. Suppose that {a,} is o normalizing sequence and that
4, =41 H, for all n. Let f be a mnonnegative Borel measurable
Sunction on G. Let

FH(@) = sup, a, S JFdn,
Hy
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Jor xeG and for t =0, let Bf = {xcG:f ") >t} Then for t =0
and every compact subset F of G, we have

(i) tx(BmF)chS _fdn.

If f is also in ¥f(G, \), then
(i) fH@) < oo
Jor N-locally almost all = in G.

Proof.® Let ¢.(x) = ang Jdn,. Let N be a fixed positive inte-

H
ger and let Dy ={xecG: supl;éN {2y >t} For n=1,2 ..., N, let
E,={xcG:¢(x) >t} and let A, = E, N (Ui-... E,); note that 4, =
E,. Note also that £, H, = E, for n <k and hence A ,H, = A, for
all » < N. Recall that a,\,(xF N H,) =< cr for all 2 and » by Lemma
1. For all #, we have

A, N F) = S i
= |, |, fendein
=] | cuo@fain@ing
= [ 4 | funmmt@ @ @in )

f(x)an SH An(y‘l)sunﬂF)“la:(y>d7\’n(y)d>\’(x)

- Sef (@ex, Sﬂn Ei11a,0m(H)INL(Y)AN(@)
S S(@a (7 (4, N FY N H,)d\x)
ﬂ

F@an @A, 0 Fy 0 H,)d\a)

~En

B

< cFS Fdx .
4,

The last equality follows from the fact that A, H, = A,. Since D,=
U™ A, and the union is disjoint, we infer that ix(Dy N F) = CF§ Fda.
Dy

Inequality (i) now follows from the fact that Bj is the union of the
increasing sequence {D,} of sets.

To prove (ii) we need to show that B = [, By is locally null,
For a compact set F, (i) shows that tx(Bf N F) = ¢r || f], and hence
lim, . MBF N F)=0. Therefore M(BN F) =0 and B is locally null.

5 This proof of (i) is a modification of the proof of one of Jessen’s lemmas [10].
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An example showing the necessity of the hypothesis regarding 4
and the 4,’s will be given after Theorem 5. In Theorem 6, we will
obtain sharper results about the function f* for the case that G is
compact.

THEOREM 5. Suppose that {a,} is a mormalizing sequence and
that 4, = 4| H, for all sufficiently large n. If f is in L(G, \), then

(i) lim,a, SH Fdn, = ngdx

for \locally almost all = in G.

Proof. Choose n, so that 4, = 4| H, for n = n,. We apply Lemma
2 to the sequence {a,\,:7n = n} of measures; these measures may,
of course, be regarded as defined on G. Hypothesis (i) follows from
Theorem 1, To prove (ii), we replace f by a Borel measurable function
that is equal to it \-a.e. and then apply (ii) of Lemma 3.

REMARKS AND ExamMPLES, The hypotheses regarding 4 and the
4,8 in Lemma 3 and Theorem 5 are there because Lemma 3 is false
otherwise and because we are unable to prove or disprove Theorem 5
without this hypothesis; compare with our remarks following Theorem
4. We now give an example to show that (ii) of Lemma 3 can fail

if 4,5 4] H,. Let G be the group of real matrices (g g’g’ x>0,
2z > 0; we abbreviate (g Z) as (x,y,2). See 15.28.b of [8]. Let
H, = {(x,0,1): 2 > 0} and for n = 2 let

H, ={(x,y,exp(k-27"):2 >0,ye R, ke Z}.

The characteristic function f of {(z,y,2):2 > 1,|y|<1,1<z<e}isin
&(G); its left Haar integral is T 2%z dedydy = 2. If (a,b,¢)eG,
then tarmerJ ANy 18 the integrail lerelr H, of the characteristic function
of {(@,7,2):ax>1 |ay+bz|<1,1<ez<el. If a>0, b <1, and
1 < ¢ < e, the intersection of this set with H, is {(x,0,1): 2 > a7}
and therefore

S (wprerd AN = S AN = oo,
Hy o

Thus f*(a,b,¢) = o« on the open set {(a,b,¢):a >0,]b|<1,1<ec<e}
which is certainly not a-locally null.

If one applies Theorem 5 to the real line R and its subgroups
H, = {k2 " : ke Z}, one finds that

lim, 2 3% f(x . ) - S:Q F)dy ae.

[y on
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whenever f is in 2,(R).

Groups G admitting nontrivial increasing sequences {H,} with dense
union exist in profusion. For a compact Abelian group, this property
holds if and only if the character group X contains a nontrivial
decreasing sequence of subgroups whose only common element is the
identity. Any nontorsion X has this property as does any X that is
a sum or product of an infinite number of subgroups. Some groups
without this property are finite products of Z(p~) groups. Thus finite
products of the groups 4, of p-adic integers do not have nontrivial
increasing sequences {H,}. An allied question asks what groups contain
increasing sequences of finite subgroups. No compact infinite Abelian
torsion-free group enjoys this property. If G is a direct product of
finite groups or groups with this property and there are at most ¢
factors, then G also has this property. Thus {—1,1}* and 7° have
this property. Finally, of course, there are nonabelian groups that
contain increasing sequences of finite subgroups having dense union.
Such an example is the group O(2) of orthogonal transformations of
the plane and its subgroups H, of symmetries of the regular polygon
with 2" sides.

All the results of this paper are simple and uninteresting (though
true) when the subgroups H, are open. A locally compact Abelian
group is the union of an increasing sequence of proper closed (re-
spectively, open) subgroups if and only if it is not compactly generated;
see Lemma 3.3 of [2].

The next technical lemma is needed for our last theorem.

LEMMA 4. Let G be a compact group. Let f be a monnegative
Borel measurable function on G and let f* and Bf be as in Lemma 3.
For wu=0, let B,={xecG:flx) >u}). If 0<a<landt=0, then

(i) <1—a>tMB;*>§§ Fax .

Bw
Proof. Let g = f&z,,; then we have

@ = sup, | ), ondnw)

n

+ sup, gyn Aay)ey, (ay)dn ()
= g%@) +at.
Thus, letting Cf = {x e G : g*(x) > u}, we have
Bf cChiae -

Applying (i) of Lemma 3 to ¢ yields
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(1 — a)tMBf) = (1 — a)pMCliay

={, ons| =] ran.
Oi—a)t @

Bat

THEOREM 6. Let G be a compact group. Let f be a nonnegative
Borel measurable function on G and let f*(x) = supng SN, If
fis in &, where 1 < p < o, then so is f* and "

(i) £, =—2—1rll, .
p—1

If feRlogt &, then f*e & and for every ac]0, 1], we have
(i) J1£* 0= =+ 2| flog* fan.
« l—a e

If fe&, then f*e&, for all 0 <p <1 and
i) [/, =@ =) fll.

This theorem is proved using (i) of Lemma 3 and Lemma 4 in
exactly the same way that the Hardy-Littlewood maximal theorems
(21.76 and 21.80 of [9]) are deduced from Lemmas 21.75 and 21.79
of [9].

Theorem 6 cannot be extended to locally compact noncompact
groups as the following examples show. Consider the group R of
real numbers and its subgroups H, = {k27": ke Z}. If f = &y, then
f*(x) =1 for all xe R. A more striking example is given by the
function g(x) = (1/2)é,-(2). Even though g belongs to £,(R) for all
> 1, g¥(x) = o for all ze R; g* is not even locally in 2,(R).

The authors are indebted to Professor Edwin Hewitt for suggesting
this problem.
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