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This note supplements the longer paper [3]. It is proved
in §2 that if T is a bounded Schwartz distribution on R,
e.g. an L= function, then its Fourier transform & T is of
the form 0"f/0t,- - -0t, where f is integrable over any bounded
set to any finite power., This follows from the main theorem
of [3], but the proof here is much shorter.

Secondly, §3 shows that a p-sub-stationary random
(Schwartz) distribution has sample distributions of bounded
order, This generalizes a result of K. Ito for the stationary

case.
Third, in §4 it is shown that p-sub-stationary stochastic
processes define p-sub-stationary random distributions if p=1,

In {5], K. Ito introduced stationary random Schwartz distributions
L with second moments. He obtained the “spectral measure” represen-
tation of the covariance of L. Using this, he proved for each such L:

(I) There is a finite # such that almost all the sample distributions
of L are nth Schwartz derivatives of continuous functions.

The spectral measure also yields

(IT) Almost all the sample distributions of L are tempered dis-
tributions, and their Fourier transforms are first Schwartz derivatives
of locally square-integrable functions.

In [3], (II) was proved for random distributions L which are
“p-sub-stationary” for some p > 1, i.e. for each f in the Schwartz
space &,

swp B Lie, /)P < ==,

where (7,/)¢) = f(t — k). Also, “locally square-integrable” was
strengthened to “locally integrable to any finite power”, In §2, we
shall give corollaries of this result for fixed distributions and stochastic
processes with much easier proofs. In §3, we first prove (I) in the
p-sub-stationary case for any p > 0, using some lemmas from [3] but
no Fourier analysis. Then we obtain a result on the Fourier trans-
form of the covariance for p = 2. In §4, we show that for p =1 a
p-sub-stationary stochastic process is also a p-sub-stationary random
distribution,
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2. Fourier transforms of bounded functions and distributions.
All three theorems in this section are immediate corollaries of the
main theorem of [3], but perhaps the easier proofs here will make
that result more accessible.

We use the notations of L. Schwartz [8], e.g. &, &', &, & .
.# is the Fourier transform operator. The results say that if a
distribution B is bounded or belongs to a suitable “stochastically
bounded” class, then #B is of the following type:

DEFINITION., A distribution C in <2'(R*) is an FB-distribution
(Ce FB) if and only if there is a measurable function f on R* such
that

C = 8 f/at, - - - dt,

in the sense of distributions, and
| 1Ot dt <
whenever 0 < r < « and K is compact,

Beurling {1] has called a distribution on R a “pseudomeasure” if
it is the first derivative of a locally integrable function. Thus the
pseudomeasures include the class F'B on the real line. The work of
Beurling, Kahane and Salem [6] and others on pseudomeasures has
apparently been primarily devoted to the question of which compact
sets carry pseudomeasures of certain types. I do not know of any
mutual implications between our results,

A distribution B in <'(R*) is called bounded (Be <#’) if for
every f in =,

sup {| B(z,f)|: he R*} < oo

(cf. Schwartz [8, tome I, Théoréeme IX(b) p. 72; tome II, “Autre
définition des distributions bornées”, p. 61]). It follows immediately
from the main theorem of [3] that if Be <#’, then .&% Be FB,

We shall use here the Hausdorff-Young inequality for Fourier
transforms rather than for series as in [3]. Suppose 1< p =2,¢9 =
p/(p — 1), and fe L?(R). Let

S, [t =mn

FPO=100" 1t >,

Then the functions & f, are in LYR), and for some % in L4YR),
F f.—h in L¢ (Zygmund [9, 12.41 p. 316]). In the sense of tempered
distributions, we have simply # f = h.
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To illustrate our method, we first prove
TueoreM 2.1. If fe L=(R), then & fe FB.

Proof. Let g(t) = f(t) for [t]| =1, g(t) = 0 elsewhere, and A =
f— g. Then by the Paley-Wiener theorem, & ¢ is an entire analytic
function, hence so is its indefinite integral, and & ¢ ¢ F'B.

Let j(t) = A(t)/t. Then je L#?(R) for all p > 1, so & j¢ L? for all
g = 2. Thus

D(F §) = F(—2mit)) = F (—2mwih)e FB,

so &% he FB., Hence & fe FB,

In [3], there was an example of a bounded function f (the
Heaviside function) with & f = Dg, so that ¢e L” on each bounded
set for # finite, but with ¢ unbounded near zero,

Next suppose (2, <Z, P) is a probability space. A jointly measur-
able map

{3, 0y — 2(t, ®)

of R* x 2 into R will be called a measurable stochastic process on
R* which is p-sub-stationary if

supg]x(t, @) |? dP(@w) = M < oo |
We let X, (t) = «(¢, ), and E = integral with respect to P.

THEOREM 2.2. Suppose x(-, -) is a p-sub-stationary process on
R and p>1. Then for P-almost all w, # X, e FB,

Proof. Let Y (t) = X (t) for {t| =1, Y (f) =0 elsewhere, and
Z,=X,— Y, Then for 1 <r < p,

B\" |zmrat=| (EIX@OFYerd s 2 - 1)

Thus Z.(t)/te L for almost all @, so
FZ)tye s for plp—1) =8 < oo,

Thus D& (Z(t)/t)e FB, and hence &% Z,e FB. Now Y, is almost
surely integrable with compact support, so .& Y, and its indefinite
integral are entire functions, % Y,c FB, and & X, e FB for almost
all w,

Now we generalize Theorem 2.1:

THEOREM 2.3, If Te &Z'(R*), then & Te FB.
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Proof. T is a finite sum of partial derivatives of bounded functions
(Schwartz [8, tome II, Théoréme XXV p. 57]). Clearly FB is closed
under multiplication by polynomials, Thus we may assume T is a
function f in L=(R").

TFor each subset A of the finite set {1, 2, ---, k}, let S, be the
set of all ¢ in R* such that |¢;] > 1 if and only if je A, Let f,=f
on S,, fi =0 elsewhere, Then for each A4,

gA:fA/IeIAtje L*»(R*) for all p > 1,
7

so that & g, e LY(R* for all ¢ = 2. Taking indefinite integrals in the
x; for j¢ A, we obtain & f, = 0"h,/0x, -+ - 0x,, where

Sk | ha(@) " dmy - v - da, < oo

whenever 0 < < c and K is compact. Thus

7f:§ﬁfAeFB.

The converse of Theorem 2.3 is not true, since it is easy to
construct examples of 2-sub-stationary stochastic processes whose
sample functions are unbounded (as distributions) with probability 1.

3. p-sub-stationary random distributions are of finite order.
Let (2, <7, P) be a probability space and let M(2) be the linear space
of <#-measurable complex-valued funections on £ modulo functions
which vanish P-almost everywhere. On M(2), let T(P) be the topology
of convergence in probability. 7T(P) is metrizable, e.g. by the metric

af, 9) = Slf(x) — g(x) /(1 + [ f(@) — g(x) NdP(z) ,
but it is not locally convex in general.

DEFINITION. A random distribution is a sequentially continuous
linear map from <7(R) into some M(2) with topology T(P).

It follows from a theorem of R. A, Minlos [7] (see [4, Chapter 4,
§2, £4, Theorem 6]) that for any random distribution L there is a
countably additive measure @ on &' such that for any f, ---,f, in
<7 and Borel set B C",

Q{M. <M(f1)y ctcy M(f'n)> € B} = P{CO: <L(f1)(a))y Sty L(fn)(w)> € B} .

The subsets of &’ on which @ is given form an algebra (the
“cylinder sets”). The unique countably additive extension of @ to the
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generated o-algebra will be called the Minlos measure of L.
For any f in &7(R) and integer n = 0 we let

= (S 71D par)”

Also, for any finite interval (a, b), &2 [a, b] will denote the space of C=

functions vanishing outside (a, b), with its relative topology from <z.
This relative topology is defined by the countably many norms || |,
(although that of & is not). For A and B in &’ we say “A =B on
(a, by if A(f) = B(f) for all f in =[a,b]. The distribution defined
by a locally integrable function f or derivative D?f will be written
[f] or [D?f] respectively.

Clearly a continuous linear functional A on “Zfa, b] for || |,
has the form

A(f) = é}o SZfo(x)gj(x)da:

for some g¢; in L[a,b]. Thus, integrating by parts and adding, we
have

A(F) = [D"gl(f) = [D"R{(f)
for some ¢ in L*a, b) and absolutely continuous % on (a, b).
THEOREM 3.1. Let L be a p-sub-stationary random distribution
Sfor some p > 0. Then there is a positive integer n such that the

Minlos measure of L 1s concentrated in the set of M in &’ such that
M = D*f for some continuous function f (depending on M),

Proof. The hypothesis becomes stronger as p increases. Thus
we may assume 0 < p < 1. For each g in & let

A(g) = sup, (E | L(z,9) [?)? < oo .

Note that A will not generally be a pseudo-norm for p << 1. By Lemma 4
of [3], there exist K and # = 0 such that A(g) < K| g|l, for all g in
=10, 1], hence for g in =r|b, b + 1] for any real b.

Now given ¢ > 0, there exist f, ---, f, in & such that

j_?;fj(t)zl for |¢t] < ¢,

and such that the diameter of the support of each f; is at most 1 (cf.
[3, proof of Lemma 5]). ILet ge &[—¢,¢]. Then for each j,
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| Do(s) [ dt)

LIS oo ar)”
< (n + 12" gll, max (| Dfi(8)| : te R, 0= r =),

0

n

=0
c

i

Hafill= (51
S

0J0

Thus for some M, > 0,
a0 = ((aZwn))" = (S @arr)”
= k(31

j=1

af,liz)" = Mgl

for all g in &2[—e¢, c].

Now Z—c¢, c] is a nuclear space (see e.g. Gelfand and Vilenkin
[4, Chapter I, §3, £6]). Thus a theorem essentially due to Minlos
([7], [4, Chapter IV, §2, £3, Theorem 4]|) implies that the Minlos
measure of L restricted to <[—c, ¢] is concentrated in the set of
distributions continuous for || ||,., for some # (actually » = 1). Thus
the Minlos measure is concentrated in the set of all M of the form

= [D™" ' f] on (—e¢, ¢)

where f is continuous and depends on M. Given M, f on (—¢,c¢) is
determined up to an additive polynomial of degree at most n + ».
Fixing f on (—1, 1), say, we obtain

M = [D™+if]
for some continuous f (not necessarily bounded on E). The proof is
complete.

A simpler form of the last proof yields

THEOREM 3.2. Let L be o random distribution, p > 0, and (a, b}
a finite interval. Suppose E|L(f)|?P < oo for all f in <la,b].
Then for some n, the Minlos measure of L 1s concentrated in the set
of all M in =’ equal on (a,b) to [D*f] for f continuous on [a, b].

Proof. L is continuous from <rla,b] to L?(2) [3, Lemma 2].
Thus for some % and ¢ > 0,
I fll. <e implies E[L(f)[*<1,

and

(BIL) )2 = [ fllafe
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for all f in Z]a, b] by homogeneity. Now we use nuclearity of
Z]a, b] and can proceed as in the last proof.

Suppose L is a random distribution with finite second moments,
i.e. its range in M(Q) is included in L*2, &£, P). Then there is a
unique B in &’(R?) such that

E(L(f)L(9)) = B(f Q 9)
where (f'&Q 7)(s, t) = f(s)7(t) (see e.g. [2, §3]).

LemMA. If L is 2-sub-stationary, then B is bounded.

Proof. We must show that for any 4 in &/ (R?), B(c,h) remains
bounded as z runs over R®. We know this for # of the form f® g,

f,9e 2(R).

For a general 4, we have /(s, t) = 0 outside some square Cy: [s| £ M,
|[t| < M. Let ge 27(R),9(s) = 1 for |s| < M, and g(s) = 0 for |s| = 2M.
We expand % in a Fourier series:

h(s, t) = g(s)g(t) >, a(m, n) exp (wi(ms + nt)/2M)

for all (s,?) in R*. Since % on C,, extends to a C* function periodic
of period 4M in s and ¢, we know that for any polynomial p in two
variables, p(m, n)a(m, n) is bounded.

Now, by Lemma 4 of [3] there exist k¥ and N > 0 such that

sup (£ L(z.f) )" = N[fll

for all f in &|—2M, 2M]. Let

ha(s) = g(s) exp (w ims/2M) .
Then

(ol = (5], 1 Do) [ dsy's = (L + my
for some 7' >0 (depending on M and g, but not on m). Now
h(s, t) = %a(’m, M) (8)R,(T)
and a(m, »)(1 + mH)*(1 + w*)*** is bounded in m and %, so
sup | B(z.h) | < sup 35 | a(m, m)B(e.h, @ Tih) |
= NS5 fam, )] [ 11l < oo

From the lemma just proved and Theorem 2.3, we can infer that
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for any 2-sub-stationary random distribution L,

E(L(f)(g)) = C(Z fR(F 9))
for some FB-distribution C, i.e,
C = [2°f(z, y)/oxdy]

for some measurable function f integrable to any finite power over
any compact set. When f is of bounded variation on R* L (or B)
is called Aarmonizable. Clearly such a B is a bounded continuous
function: Be & (R?). We have the following inclusions of subsets
of Z'(RY):
harmonizable ¢ & cL>C &’
C . "{FB)c & " (pseudomeasures) .

For none of these classes do we have a simple characterization both
of the distributions and of their Fourier transforms (such as the
Bochner, Plancherel and Paley-Wiener theorems and their generali-

zations and other results of Schwartz). Thus which will yield the
most useful theory remains unclear,

4. Stochastic processes and random distributions.

THEOREM 4.1. If p=1, a p-sub-stationary stochastic process
x(-, +) is a p-sub-stationary random distribution.

Proof. Let fe &7(R*). For any % in Rf let

A h) = g H At — hyat, a))dt[de(a))

RE

_ S HR F(s)x(s + h, ©)ds| dP(w) .

Let C be the support of f and let » be Lebesgue measure. We
apply Holder’s inequality to the inner integral, with ¢ = p/(p — 1),
obtaining

A DY S 1| Tats + b, @) dsdPl@)
[
= [ FIEMC) sup || ofs, @) P dP(@) < o= .

Thus a random distribution L is defined by

L(f)@) = |, att, )it
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and is p-sub-stationary.

For p < 1, it seems unclear whether a p-sub-stationary stochastic
process defines a random distribution at all,

I thank C. M. Deo for pointing out some corrections to [31 which
were incorporated in the published version, and for suggesting that
(I) should held for p-sub-stationary processes.
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