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Recently N. C. Ankeny derived a law of rth power
reciprocity, where r is an odd prime:

q is an rth power residue, modulo p = 1 (mod r), if and
only if the rth power of the Gaussian sum (or Lagrange
resolvent) r(χ), which depends upon p and r, is an rth power
in GF(qf), where q belongs to the exponent / (mod r).

τ(χ)r can be written as the product of algebraic integers
known as Jacobi sums. Conditions in which the reciprocity
criterion can be expressed in terms of a single Jacobi sum
are presented in this paper.

That the law of prime power reciprocity is a generalization of the
law of quadratic reciprocity is suggested by the following formulation
of the latter:

If p and q are distinct odd primes, then q is a quadratic residue
(mod p) if and only if ( —l)(2)~1)/2p = τ(α/r)2 is a quadratic residue
(mod q)a Here ψ denotes the nonprincipal quadratic character modulo
p (the Legendre symbol) and

τ(ψ) = Σ ψ(n)<?*inl*
n=l

is a Gaussian sum.
A complete statement of Ankeny's result is the following:
Let r be an odd prime. Q(ζr) will denote the cyclotomic field

obtained by adjoining ζr = e2πilr to the field of rationale Q.
Let p be a prime = l(mod r). Let χ denote a fixed primitive rth

power multiplicative character (mod p). Define the Gaussian sum

Let q be a prime distinct from r, belonging to the exponent
/(mod r). Then

Tiχf-1 = [τ{χ)ψf~1)ίr EE χ(q)-r (mod q) .

Consequently, if q is any one of the prime ideal divisors of the ideal
(q) in Q(ζr), q is an r th power (mod p) if and only if τ(χ)r is an r t h
power in Q(ζr)/q, a field of qf elements; i.e.,

( 1 ) liQ) = 1 if and only if τ(χ)r = /3r(mod q)
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for some βeQ(ζr) [1, Th. 2] .

The following properties of the Gaussian sums are well known:
Assume k Ξ£ 0(mod r).

( 2) τ(χk)τ(χ-k) = p

τ(t) g Q(ζr), but τ(tYlτ(χki) e Q(ζr) .

In particular,

τ(tYeQ(ζr).

During the nineteenth century several people worked on special
cases of the problem solved by Ankeny. C. G. J. Jacobi treated r = 3
in [3]. Using Cauchy's result that

τ(X)qlτ(V) = χ(g)-*(mod g), [6, p. 108]

T. Pepin showed that if q = ± l(mod r), then χ(q) = 1 if and only if
τ(χ)r/τ(χ*)r is an rth power residue (mod q), ([6, pp. 117, 120]).

Define the Jacobi sums

AT, t) - Σ T(n)t(l -n) = % c& .

If r does not divide α, δ, or a + δ,

^(%α, t) = ^(z α )^(z 6 )Mz α + & ) ,
so by (2)

( 3 ) π{χ\ χδ)ττ(χ-β, χ~fe) - j> .

(For information on Jacobi sums see [2, Ch. 20])

τ(χ)r can be expressed as a product of Jacobi sums, as follows:

τ(χ)r - τίχMχ'-1) Π2 τ(χ)τ(χ>')/τ(χ*+1) = p π2 π(χ, χθ, by (2) .

For r = 3, τ(χ)r = pτr(χ, χ), so that knowing π(χ, χ) gives complete
information about reciprocity. For r > 3, however, it is often necessary
to consider products of Jacobi sums. Some cases where π(χ, χ) itself
gives complete information about reciprocity are described in the follow-
ing two theorems:

Notation. For brevity, let π[t] = π(χ\ χι). Let π[l] = ^z\cάζU
Then
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Let 2 belong to the exponent s(mod r) .

LEMMA. π[tγ Ξ= π[tqh}{moά. q).

Proof.

THEOREM 1. Assume 2r~1 ̂  l(mod r2). 7/ ίfeβrβ exists an integer
u such that qu = 2(mod r) , then τ(χ)r is an r t h power in Q(ζr)/q if
and only if π(χ, χ) is.

Proof. By an identity attributed to Cauchy, [6, p. 112]

~ Π ^[25]2 = JJ τr[^M5]2

( 4 ) - βr Π π ^ ^ l ^ ^ - ^ ^ , for some β e Q(ζr) .

To the i t h factor of the product in (4) apply the lemma with

t = 1 and A = uj:

s s ~ 1 _ _

3=0

= Yπ[l\2s~ιs (mod g), for some τeQ(ζ r ) .

Since r 2 | 2 r ~ 1 - 1, r | ( 2 s - l)/r. Also, r | 2 s ~ 1 s . It follows that
τ(χ) r is an r th power in Q(ζr)/q if and only if τr(χ, χ) is.

EXAMPLE, r = 7, g = 3. s = 3, u = 2.

r(χ)7 = 7Γ[1]47Γ[2]27Γ[4] - ^ [ l l ^ P T ^ P 4 ] 8 0

Ξ /S7[ττ[l]34]3 = /S7τr[l]34 3(mod 3) .

(A different treatment of the example was given in [5, p. 351].)

THEOREM 2. Assume 2r~x =£ l(mod r2), r > 3, αm£ s = 2 (mod 4).
If there exists an integer v such that q° = 4 (mod r), f̂eeπ τ(Z)r is α%
rth power in Q(ζr)/q if and only if ττ(χ, χ) is.

Proo/.

i=o
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= ΐfX π[q^r~ι-23π
j

( 5 ) = βr SffπWψ υ { s l 2 ' ί '3 }πW iV i Φ '

for some /5 e Q(ζ r),

/ 2 1 ) ( / 2 1 ) q),

by applying the Lemma with h = ^i and £ = 1, then 2, to the jth
factor of (5). Now apply the Lemma to the second factor of (6) with
ί = 2, h = v(s- 2)/4:

= 7r[τr[l]2S~V[2s/2]2S/2"1]s/2 ,

for some ye Q(ζr),

= 7r[π[l]2S"1τr[-l]2S/2~1]s/2(mod q) .

By (3)

Since r > 3, g ^ l(mod r), so p is an r t h power in Q(ζr)/q.

2-1 _ 2s/2-1 = l(mod r), so

τ(χf- 1 = δ rπ[l] /8(inod q) ,

for some deQ(ζr). r)f(2s — l)/r, r | s / 2 , and the theorem follows.
In Theorem 3 of [5] the above results were proved for the follow-

ing values of q, under the restriction 2 r - 1 φ. l(mod r2):
(a) q = 2(mod r) .
(b) r > 3, q = - 2 (mod r) .

Part (a) is included in Theorem 1. Part (b) has three cases:
If s is odd, (-2) s + 1 = 2s 2 = 2(mod r). Theorem 1 applies, with

u = s + 1.
If S Ξ 2 (mod 4), (-2) 2 = 4. Theorem 2 applies, with v = 2.
If s = 0 (mod 4), (-2) s / 2 + 1 = - (2)s/2 (2) = 2(mod r) . Theorem 1 applies,

with u = s/2 + 1.
For certain small values of g and r it is possible to characterize

when χ(q) = 1 in terms of the coefficients of π[l] (mod p). Pepin
gave the following three (the first not quite correctly).

Let r — 5. χ(3) = 1 if and only if cx = c; (mod 3) and

c2 = c3(mod 3) [6, p. 132] .

Let r = 7. χ(3) = 1 if and only if cx = c2 = c4 (mod 3) and
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c3 = c5 = c6(mod 3) [6, pp. 145-146] .

χ(2) = 1 if and only if c0 is odd [6, p. 122] .
Analogous criteria for r = 5, q = 7 and r = 7, q = 5 can be found

in [5, p. 349].
A more general result, which yields only a sufficient condition,

however, was suggested by Emma Lehmer [4], who proved it for
r — 5.

THEOREM 3: Assume 2r~2 -φ l(mod r2), and r > 3. Let g be a
primitive root, modulo r. If cg = cgs = <v = ~ cgr-z (mod g) and
cg

2 = cgί =cgG = .•• = c : (mod q), then q is an r th power residue
(mod 39).

r-3 r-3

Proo/. Let λ = Σ C '̂, ̂  - Σ Cf+1

ί=o 3"=o
r-l r-1

π[l] = Σ ciCr = Σ (ci - co)ζj Ξ (Ci - co)λ + (c^ - c0) ^ (mod g).

Similarly,

^ M = (Ci - c0)^ + (cff - c0) λ (mod q) .

If 2 is a quadratic residue, modulo r,

τ{χT~-' = Π ^ [ 2 f " H ^ Π [(ci - co)λ + (c, - Co)^]^- 1

Ξ [(cx - co)λ + (cg - c0)/J]2S~1(mod q) .

If 2 is a quadratic nonresidue, modulo r,

Ξ [(Cl - co)λ + (c, - Co)^]2^'--^8^^ - co)μ + (c, - co)xrs-^

(mod g) .

In both cases τ(χ)2S~1 has been shown to be an r th power in
Q(ζr)/q. Since r)f(2s — l)/r, τ(χ) r is an r th power in Q(ζr)/q, and
applying (1) yields the theorem.

COROLLARY. Assume 2r~1 3= l(mod r 2). If cί = c2 = = c M

(mod q), then q is an rth power residue (mod p).

Proof. If r > 3, apply Theorem 3. If r = 3, τ(χ)3 = (c0 - cx)
3

(mod q)m

A computation by John Brillhart shows that 1093 and 3511 are
the only primes r less than 224 for which 2r~~1 = l(mod r 2).
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