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L. Sario has constructed principal analytic functions on
planar bordered Riemann surfaces by applying the method of
linear operators to certain sets of singularity functions. Weakly
Z-valent principal functions result from a similar construction,
starting with singularity functions having flux equal to integral
multiples of 27, In fact, such i-valent maps are characterized
as integral powers of principal analytic functions already
mentioned.

L. Sario has used linear operators to establish the existence of
certain canonical mappings of planar bordered Riemann surfaces W
onto slit disks [4]. These mappings Fy(z) and F\(z), called principal
analytic functions, are formed from principal harmonic functions,
themselves constructed by applying the linear operator method of [5]
to systems of singularity functions defined near certain point sets of
W. In particular, near v, the border of W, the singularity function
sy(?), which is constant on v with flux 27 there, is chosen, while near
¢, a point of the surface W = W — v, the singularity function sg(2) =
log |z — (| is selected. By exhausting the planar bordered surface W,
one constructs the mappings Fi(z) and F(z) of W onto a plane disk, with
radial or circular slits, possibly degenerate. It is easily established
that, for 7 = 0, 1, 4(arg F',(?)) is 27, the flux on v of the singularity
function s,(z), and that each F,(z) has a first order zero at z = {. These
conditions are easily seen to be a consequence of the selection of the
singularity functions s,(z) and s(z).

In this note, we investigate the nature of “canonical” maps F}z)
and FMz) which result from starting with singularity functions s}(z)
near v and s3(z) near {. Here, s)(z) is constant for zevy with flux

ds}* = 2mn while s}z) = Mlog {z — {|. If an approximation process
Similar to that of [4] is applied, canonical maps F(z) and FY\(z)
result. Because 4,arg F(z) =\ ds}* = 2, it follows that the map-
pings F}z) and F}(2) are x-v;ﬂent, at least near v. Also, at the
point { of W, these mappings have a \-th order zero, and hence are
A-valent near { as well., It is then reasonable to ask whether the
functions F}z) and Fz), with radial and circular slit behavior
near the ideal boundary, are globally \-valent in some sense.

For a bordered Riemann surface V with two border components
6 and v, constructions similar to those of [3], starting with singularity
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funections sj(z) and s)(z), lead to similar questions concerning the
nature of \-valent mappings of V onto a slit annulus. The purpose
of this note then, is to determine the geometric nature of multiply-
valent canonical mappings based on the constructions already outlined.
In terms of principal functions already known, we shall be able to
establish a classification of such mappings based on the concept of
weak \-valence,

2. The \th principal analytic functions. We consider first
an exhausting set of bordered surfaces {W,}, each of which has v as
one of its border components, and has remaining border components
denoted B, ++-, Bym. On every W,, we construct A-th principal analy-
tic functions F(z) and F7(z) such that (i) |F(z)| = constant =
r(Fp) for zevy with 4,(arg F\(2)) = 2n\, (ii) F)(2) has a \-th order
zero at z =, and (iii) FX(z) (FA(z)) maps each of W)s remaining
border components @; onto a radial (circular) slit. Such mappings are
constructed by selecting singularity functions s}(z) and s}(z) already
defined in §1, and selecting the singularity functions sj(z) near 3; in
the manner of [4]. For ¢ = 0,1, the functions F}(z) result from an
application of the linear operator method [5], and these are normalized
by the condition lim, . F}(2)/(z — {)* = 1. The families {F{,(2)} and
{F}(?)} are normal, and the resulting limits Fi}z) and F}(z) are called
N-th principal analytic fumctions on W. It now seems reasonable to
expect that these mappings are weakly \-valent in the following
sense,

DEFINITION. The mapping F(z) is called weakly n-valent if, for
each we F(W), the set F—'(w) consists of at most ) points ze W,
and for some we F(W), the set F~*(w) consists of exactly A\ points.
A weakly A-valent mapping F(z) of W into the point set S is called
a radial (circular) slit mapping of W into S if each component of
the set {we S; F~'(w) contains at most » — 1 points ze W} is a radial
(circular) slit or point.

3. Properties of \-th principal analytic functions. The fol-
lowing are some properties of the maps FMz) and Fz) which will
prove useful,

(i) For ¢ = 0,1, the function F(z) has no zero on the surface
W —C.

(ii) If 4() is a parametric disc with boundary 6 whose orien-
tation is induced by 4({), then for 7 = 0,1, | d(arg F}Xz)) = 2m\.

(iii) If ¢ is a cycle contained in W — C, then for i =0, 1,2
divides the integer (1/277:)8 d(arg FNz)).
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Proof of (i). If Z, is the number of zeros of F(z) in W., with
border v + B,, we apply the argument principle and find:

- L] ame
2wt JviB.  dz

/ FMz)dz = lim

= | 0 [ mea
o2nt Jvib,  dz o

= lim L g d(arg FA®R) = \ .
m 2T Jv+B,

Hence F'}z) is never zero on the surface W — (.

Proof of (ii). In the parametric disk 4({), we may write F}(z) =
(z — OMi(z), where fi(z) is never zero in 4(C). Hence it follows that
g d(arg Fi(2)) = 27\,

8

Proof of (ili). We let ¢ be an arbitrary cycle of W — {, and
choose n large enough so that ¢ < W,. If a parametric disk 4(¢) is
removed from W,, the bordered W, — 4({) results. Hence there are
integers @, b, and ¢; such that ¢ is homologous (in W, — 4()) to

ay + bé + S E™ ¢;8;; and S d(arg F')(z)) may be written as

| darg F2@) = o | dlarg F2@) + b | darg F22)

+ e | dlarg F2@)

J
k(n
= 2mna — 2mAb + lim Z)J ¢; S d(arg F}(z))
m 1 5_1

= 2mna — 27T\b .

Thus it follows that )\ divides (1/27t)§ d(arg F(z)).

The following theorem, characterizing the nature of F(2) and
F}z), is our main result.

THEOREM 1. The N-th principal analytic function FNz) (FNz))
18 the M\-th power of the principal analytic function Fy(z) (F\(z)) of
[4].

Proof. We consider only the mapping F(z) because the argu-
ments for Fz) are entirely analogous. According to property (iii)
of this section, A divides (1/2x) S d(arg F}z)) for each cycle ¢ in W — ¢,
Hence it follows from the theorem of the appendix that F\(z) has
an analytic A\-th root, say G(z), in W — {. But { is a removable
singularity for G(z), and we call G(z), with G({) = 0, an analytic \-th
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root of Fz) in W, and in fact in W.

In the neighborhood 4 of {, we have F}z) = (G(z))" (z — O*H(z),
where H({) has been normalized to 1. If we let H(z) be some analytic
A-th root of H(z), then the set of functions {H(z)exp 2mik/\;k =
0,1, .-+, N — 1}, according to the corollary in the appendix, represents
all A-th roots. But (H({)*=1, hence one of the quantities
H(C) exp 2mik/n is 1. We assume that this occurs for & = 0, that is,
H() =1, and we take G(z), with (G(z))* = FNz), as that branch for
which H({) = 1. In particular, in 4(0), G(z) = (z — {)H(z), and G’({) = 1.

We claim now that the functional @&(G) = 2z log »(G) — A(G) of
[4] has the value @(F),), where F, is the univalent principal radial
slit mapping of [4]. To see this, we need only compute the deviation
O(F,) — &(G), and according to Theorem 3 of [4], this is only
Dy(log |G(2)[Fy(2)]). But log|G(z)/Fyz)| has a removable singularity
at {, hence we write

vor{loe| 155)

Il

Dw<log :—?’I(Z—)\U

| e i A )
[ LB gy 20 )

g | Fi(z) [* (Fo(2))*

TY(F) _
= log A 2 — 270) = 0,

i

+

It now follows from reasoning similar to the proof of Theorem 3 in
[4] that G(z2), and only G(z), maximizes @ among analytic func-
tions F satisfying (i) F(z) = const for ze~y and S d(arg F(z)) = 2r.
(i) F(Q) =0 and F/&) =1, and (iii) Ld(argF(zy))zo. But F(2)
of [4] also uniquely maximizes @ in the same class of functions.
Hence F(z) = G(z), and this completes the proof of Theorem 1,

If we apply the corollary in the appendix, we find

COROLLARY 1. The set of mappings {Fy(z)exp (2ri/\k;k =
0,1, -+, x — 1} represents all analytic N-th roots of FNz). Also,
the set of mappings {F(z)exp (2ri/N)k; k= 0,1, -+ N — 1} represents
all analytic N-th roots of FNz).

COROLLARY 2. The mappings F(z) and FNz) are respectively
weakly N-valent radial and circular slit disk mappings of W,

COROLLARY 3. For positive integers N and f, the relations
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Fiz) = (FNz) = (FER) = (Fi(z)™
hold for © =0, 1.

Similar results may be obtained for \-th principal analytic func-
tions defined on V, a bordered Riemann surface with two border
components v and 6. Again the construction of such functions is
suggested by a known construction in the univalent case [3]. One
starts with singularity functions s3(z) and s}(z) defined near v and o
of the approximating bordered V,, and takes as further singularity
functions sj(2), the functions sz (2) of [3]. Here, s})(z) is constant on
v with flux 27\, while s}(z) is constant on ¢ with flux —2z\. An
application of the linear operator method [5] to each V, establishes
the existence of the normal families {F,(?)} and {F7(2)}, all subject
to the condition F},({) = 1. Principal A-th analytic functions Fz)
and FMz) now result upon taking limits on n. We state the following
characterization of these functions in terms of the principal functions
Fy(z) and F'(z) of [3].

THEOREM 2. The mapping F}Mz) (F'2)) 18 the \-th power of the
univalent principal mapping Fyz) (F(?)) of [3].

Appendix. We state, without proof, a well known characteri-
zation of those analytic functions which, on an open planar Riemann
surface W, have analytic A-th roots, Since such a surface may be
conformally embedded in the complex plane, standard techniques of
complex analysis [1] may be employed.

THEOREM. Let f(z) be analytic and never zero on the open planar
Riemann surface W and let N be a positive integer. Then f(z) has
an analytic n-th root im W if and only if, for each cycle o W, )

divides the integer (1/27) \ d(arg f(z)).

COROLLARY. Let f(z) bz an analytic function which s mnever
zero am W. If, for each cycle o W, N dwwvides the integer
(1/27r)§ d(arg f(z)), then f(z) has exactly N analytic \-th roots in W.
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