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If a string has a density given by a nonnegative inte-
grable function p defined on the interval [0, a] and is fixed at
its end points under unit tension, then the natural frequencies
of vibration of the string are determined by the eigenvalues
of the differential system

(1) w4+ 2o(x)u =0, u(0) =ula)=20.

As is well known, the eigenvalues of (1) form a positive
strictly increasing sequence of numbers which depend on the
density o(x). We denote them accordingly by

0 < fp] < Llo] < -+ < Aol < +-- .

In this paper we find lower bounds for these eigenvalues
when the density p satisfies a Lipschitz condition with Lipschitz

constant H and : pdx = M. The bounds will be in terms of
M and H.

Specifically, if E(H, M) is the family of functions
(2) {,o . o L(H) and Sap(x)dx - M} ,

where
LH) ={p:]p) — o) | = H| 2, — z, |5 x, 2, € [0, a]},
we find a unique function p,e E(H, M) for each \,[o] such that

Nal0o] = min \,[o]

where the minimum is taken over all functions p e E(H, M).
Our results will be expressed in terms of the fundamental pair
of solutions U, and U, of the Airy equation
(3) 2U L su=0
ds
where U,(0) = 1, U/(0) = 0 and U,0) = 0, U;(0) = 1, These functions
are tabulated in [7]. The main conclusion is that

)7

ming A, [0] = [nt(f]‘l‘[
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where ¢,(K) is the least positive root of
W u(E-Du(E )
- (- D)l 1) -
if K<4 and of

(5) ULtV E) = (VLf - %)tU{(t/l/'K)
if K= 4.

This result is similar in nature to those obtained by Krein in [4].
There he found that if p(x) < H then

Hn’m*
M2

41;-1”1:2 x(%) < nlol =

where ¥(t) is the least positive root of
Vg tany = /(L — ¢) .

Furthermore, his inequalities are sharp. See [1],[2] and [6] and the
references given there for other results of this nature. The maximum
value of \,[0] over the family E(H, M) is not presented here. This
problem is being investigated and the results will be presented in a
later paper.

The method used in this paper has some general interest since
it can be used to derive the results of Krein as well as some of the
results given in the other papers mentioned above. This will be
discussed in the final section.

2. The lower bound for A\Jp]. In this section, we find a sharp
lower bound for the lowest eigenvalue \,[0] within the class of functions
E(H, M) defined by (2). It will be convenient to first prove a result con-
cerning the lowest eigenvalue of the system

(6) u"” +ro(@)u = 0, w(0) = w'(@) =0,

where 2 ¢ [0, a].

THEOREM 1. Let pJp] be the lowest eigemvalue of a vibrating
with one end fixed and the other free, density o(x), and under unit
tension between the points * =0 and € = a. If the density function
o€ E(H, m), then

(7) wlpleH = i(Hoe/m)
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where (k) is the least positive root of
® (G- w2
(2 3
when k = Ha*/m < 2 and of
@ - (F- gl
when k > 2. Moreover, equality holds if and only if
ox) = H(x — a/2) + m/«a
when Ha® < 2m and
0 , 0= =a—1Vv2m/H,

o) = Hx—-a)+VvV2mH , a—V2m/H=2z < «a,

when Ha® > 2m.

Proof. We consider the two cases Ha®* < 2m and Ha® > 2m
simultaneously. We compare any density pe E(H, M) with the func-
tion ¢ defined by

(10) q(@) = H(z — a/2) + m/a
in the first case and by
, 022 =a—-V2m/H ,
(11) q(x) = — _
Hx—a)+V2mH , a —V2m/H <2 = «a,
in the second case. In both cases, we note that p and ¢ are con-
tinuous and

S:p(x)dx = S:q(x)dx =m

so that o and ¢ have at least one common value for x¢[0, a]. If p
and ¢ have a common value p(a) = ¢(a), the Lipschitz condition implies
that for x > «a

o) — pla) = H(z — a) .
Consequently, for « > a, we have
p@) = H(z — a) + q(a) = q() .
Similarly for # < a we have po(z) = g(x). For x > a it follows that
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(12) Lot = (" awar .

For # < a we consider the integrals of o and ¢frm0to @ minus
the integrals from 0 to x and arrive at the same wnclusion for all
xel0, a.

We let pJp] denote the lowest eigenvalue o the differential
system (6) and p,[q] denote the lowest eigenvalue of the same system

with o replaced by ¢. We now use the following comparison theorem
due to Nehari [5].

THEOREM (Nehart), Let o, q be nonnegative coutimous functions
defined on [0, a] such that (12) is satisfied. Then

(13) mla] = o]

with strict inequality unless o and q are identical

The computation of y4]q] for each of the twocases k< 2 and
k> 2 in terms of the fundamental solutions, U, and U, of the Airy
equation (3) with (18) yields the conclusion of the theorem,

We use this theorem to prove the following e difficult

THEOREM 2. Let N\ [p] be the lowest eigenvaluef o string fized
under unit tension between x = 0 and x = a. Ifthe density func-
tion pe E(H, M), then

(14) Mlole*H = G(Ha?/ M)

where t(K) is the least positive root of (4) whm K=Ha*/M < 4
and of (5) when K >4, Moreover, equality Rolls in (14) tf and
only if o is the symmetric function defined by

H(x — a/4) + Mja, 0 = x =12,

lo(a_x) ’ a/2§x§a,

(15) o(@) = {

when Ha* < 4M and by

i
0 , Oéxéaﬂ—)/E ,
(16) 0@ = H(z — o/2) + VHEN , a2 — ngxéa/z,
ola — x) , a2 =x a0 ,

when Ha?® > 4M,

Proof. Let u, be the eigenfunction of (1) asociated with the
lowest eigenvalue \,[p]. If we take u,(z) > 0 in the interval (0, a),
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then w) = — \[plo(x)u(x) =0 so that u, is concave. Thus it has
only one maximum value which must be attained at some interior
point « of [0, a]. We consider the differential system

w”’ + no(x)yw =0, u(0) =u'(a)=0, x<¢][0,a],

obtain from (1) by restricting the domain of p to [0, @] and imposing
the given boundary conditions. Then \jJpo] is also the lowest eigen-
value of this system and u, restricted to [0, «] is the corresponding
eigenfunction. M,Jp] is also the lowest eigenvalue of the system
obtained from (1) by restricting « to the interval [«, a] and imposing

the boundary conditions w'(a) = u(a) = 0. If we let m = Sap(x)dx ,

m = Sa,o(ac)dx =M —m and 8 = a — «, and apply Theorem 1 to each
restricted system defined above, we obtain the inequalities

(17) Mol = ti(Ha?/m)/aH, o] = Ti(HE /m')/SH

where 7,(k) is the last positive root of (8) or (9), depending on the
magnitude of k. The theorem would be proved if we could show that
a, B, m, m' can be varied in such a way that the quantities on the
right side of the inequalities (17) always remain less than \,[eo] and
at least one of them is greater than or equal to

Ti(H(a/2y/(M]2))/(a/2YH = [2t(Ha*2M)[[a’H .

If we let ¢ = 27 and K = 2k in (8) and (9) then we get the equations
(4) and (5) so that the above considerations would yield the inequality
(14).

We carry out the process just outlined by considering the funetion
defined by

(18) n(a, m) = ti(k)/o’H

k =a*H/m for all «e|0, a] and all me[0, M]. We define a function
f on [0, a] by the equation

(19) e, f(a) = pla — a, M — f(a)) .

To show that this determines a well-defined function we note that, by
the comparison theorem for eigenvalues, 7n(a, m) is a strictly monotone
decreasing function of m for each a. Furthermore, n(x, m) — + oo
as m — 0. Consequently, n(a, m) — p(a — a, M — m) is strictly decreas-
ing between — oo and 4 o as m varies between 0 and M, proving
that f is uniquely determined.

It now follows that

(20) Mmlo] = pla, f@) = g(e — a, M — f(a)
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whenever « is a maximum point of the corresponding first eigenfunc-
tion u,. For if m = | o(x)dx > f(«) the comparison theorem and (19)
0

yield the inequality
n(a, m) = p(a, f(@)) = pa —a, M — f(a)) = n(a — a, M — m)

and (20) then follows from (17). Similarly, if m < f(a), the com-
parison theorem and (19) imply

n(a, m) > na, fl@)) = nla — a, M — f(a)) > nla — a, M — m)

and (20) again follows.

We want to show that #(a, f(a)) has a minimum value at a =
a/2,i.e., that the minimum of »n(a, m) on graph of f is located at the
point (a/2, M/2). We first show that the graph of f is centrally
symmetric about the point (a/2, M/2),i.e., that f(a — a) = M — f(«).
This is a consequence of the defining relation (19) of f since (x, y) is
a point on the graph of f if and only if (¢ — , M — y) is. Thus
for any («, f(«)) on the graph, (¢ — a, M — f(«)) is also on the graph
and hence (¢ — &, f(a — @) = (¢ — a, M — f(«)) by the uniqueness
of the definition of f. This implies that f(e¢ — @) = M — f(a), prov-
ing the central symmetry. In particular, f(a/2) = M/2. Also from
this symmetry we have that f’'(a) = f'(a — «) whenever the derivative
exists. We will show presently that this is always the case.

We now assume that » has a minimum value over the graph of
f at a point (a, f(a)) where a # a/2. Then from (19) we see that
(@ — «a, fla — «)) also is a minimum point. Suppose that the minimum
value of 7 at these points is ¢, and consider the level set

(21) {a, m) : p(a, m) = ¢} .

By the comparison theorem for eigenvalues this defines a function ¢
of wel0,a]. We will show presently that ¢’ exists. It will then
follow that f'(a) = ¢'(«) and f'(a — @) = g'(a — @) if a is the minimiz-
ing value of y(«, f()), for otherwise the derivative of 7 in the direc-
tion of the curve determined by f would be nonzero unless the direc-
tional derivative of n(x, m) vanishes in a direction other than that
of a level cure. That the latter possibility is not the case will be
concluded at the same time we show that ¢’ exists. Thus we conclude
that f and ¢ are tangent at a« as well as at a — a. From the
symmetry we concluded that f'(a) = f'(a — «) so that the same must
be true of ¢ at the minimizing value of «. We will show, however,
that ¢ is a strictly convex function of & and thus reach a contradic-
tion. We will then be able to conclude that the minimum value of
7 on the graph of f must occur at the point (a/2, M/2).
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To complete the proof we must show that f’ and ¢’ exist for all
a0, a], that the directional derivative of 7 in any direction save
that of a level curve is nonzero and that ¢ is a strictly convex
function.

To prove the first two assertions, we recall that the system (6)
with o replaced by the functions defined by (10) or (11) has the
lowest eigenvalue 7(a, m). We make a change of the independent
variable to get the system

(22) v 4+ Ny =0, p(0)=v1)=0, yel0,1]
where A(y) = Ho¥(y — 1/2) + am if a*H =< 2m and

T 2m
» Ho*(y — 1) + a®V2mH 1~1/ 2H§y<1
Y) = —
0 ’ 0§?/§1~ ﬁn—y
a*tH

if «®H > 2m. We note that the lowest eigenvalue of this new system
is still n(a, m). The derivatives f’ and ¢’ will exist and even be con-
tinuous if the partial derivatives », and 7, exist, are continuous, and
9. = 0, for then

f’(a) - ﬁa(a/v f(a)) _ 7}&(1 — A, 1— f(a))
N, F(@)) — Pl — a0, 1 — f(a))

and
gla) = — 22 9(@)
7@, g@)

Furthermore, it is evident that, if in addition 7, = 0, the directional
derivative of » will be nonzero except in the direction of a level
curve,

To verify these properties of 7, and 7,, we use the formula

S ok vi(y)dy

(23) Vo= = pE——— .
[ iy

for », and the same formula for %, with 84/6a replaced by o04/om.
It seems likely that this formula is known, but since we know of no
reference we give an outline of the derivation. Let the change in 4
due to a change Ja in « be denoted by 4% and consider the system
(22) with # replaced by & + 4. We denote lowest eigenvalue of this
new system by » + 4y and the corresponding eigenfunction by 7,.
Then 7, satisfies the equation ¥;" + (n + 49)(h + 44)7, = 0. We multiply
this by v, use the fact that v{’ + nhv, = 0 and carry out an integra-
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tion by parts to get

Sldhvlﬁldy
===

Sl(h + Ahy,Bdy

Dividing by 4a and letting da— 0, we get the formula (23). The
interchange of limit and integration is justified since 7, — v, 42— 0
and 4h/da — ke all uniformly (see [3] p. 151 for 7, —wv,). The same
proof holds for 7,.

It is clear from (23) and the corresponding formula for 7z, that
7, and 7, exist and are continuous whenever oh/0a and oh/ox exist
and are continuous. This is always the case with the possible excep-
tion of those points (@, m) such that Ha® = 2m. But even for this
case we note that since

Ok _3Hary — 1/2) + m
o«

when «*H < 2m and

0 , 0§y§1-/2m,
oh oa*H
| 3Hay — 1)+ 2avEImMH , 1y <y=1,

oH

when a?H > 2m we have the same limiting value 6my — 2m as («a, m)
approaches a point on the curve «’H = 2m. Hence 7, exists and is
continuous for all positive a and m. The same remark holds for 7,.

We can also use (23) to show that », < 0 by showing that each
of the factors there are positive. This is clearly the case for » and
the denominator. To show that g:&h/avi(y)dy > 0, we must consider

the two cases a*H =< 2m and a*H >2m. In the first case, this
inequality will be evident if we note that
1

|, 3Kty — 12wy = I

1/2

= 81/231{“2[(21 — 1/2v4(y) + (1/2 — y)'d — y)]dy .

The expression in the square brackets is positive since #»} is an increas-
ing function. In the second case, we have

[BHaX(y — 1) + 2av2mH v (y)dy .

Sl—l/Zm/a2H

The expression in the square brackets is greater than 3Hay — 1) +
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3/20v2mH . It can be shown that the above integral with this
substituted for the square brackets is positive by the same method
used in the first case.

It can be shown in a similar way that 7, < 0.

To complete the proof of Theorem 2, we must show that the
level curve defined by (21) is convex. Since the proof is rather long
we put it in a separate section.

3. Proof of the convexity of level curve 7(a, m) =¢. To
prove the convexity of the level line

(21) {(a, m) : p(a, m) = ¢}

we note that » is the least positive root of (8) or (9) depending on
the magnitude of Ha?/m and that the function g satisfies the equation
n(a, g(a)) = ¢,. It follows that g is determined by the least positive
root m = g(a) of the equation

(g, ) o) (g + ) vem)

Ha
- (- ) o) (- ) v

if Ha® < 2m and of
v:(y/ 2 T ) = (2 — ) Ve UL (/2 T )

if Ha* > 2m.

It will be necessary for us to consider the level line determined
by n(a, m) =c¢ for any positive value of ¢. We show that if the
level line corresponding to a given value of ¢ and a given value of
H is convex, then the level line corresponding to ¢, and H, is convex,
For some value of ¢ and H, we assume that the corresponding fune-
tion defined by m, = g(a) is convex so that, by (18), z,(Ha¥m,) =
¥Hea. But for any value of ¢, with (e, m) = ¢,, we have m, = gy(«)
determined by t,(Ha*/m,) = ¥Hcx or

a(H (¥ efeay/(Vedeym) = VHe ¥efea .

This implies that m, = (c,/¢)**m, = g( ¥ ¢,/c) so that the convexity of
g implies that of g,. Similarly, if ¢g is the function determined for
an arbitrary value of H, it can be shown that m, = (VH,/H)'m, =
g( ¥ H,JHa), so that g, is convex if ¢ is. Thus, to verify the convexity
of the level curve corresponding to ¢,, we may choose H =1 and ¢
may be any positive value which is convenient.
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We first consider the case where Ha® = a® = 2m and let z =
Ve(mja+a/2) and w = ¥e(mja—a/2) so that (8) becomes

F(z, w) = Uw)Uj(z) — Ufw)Ui(z) =0.
It will be convenient to define
H(z, w) = Uy(2)Uy(w) — Ux(2) Uy(w) ,
I(z, w) = Ul(w)U;(z) — U;(w)U/(?) ,
and
Gz, w) = Ui(x)Us(w) — Ul{(w)Uy(?) .

If we restrict z and w to the set S = {(z, w): F(z, w) = 0} then the
identities ¥, =zH,F, =1, H,=0,H, =G, I, = 2G and I, = 0 are all
valid.

We then calculate

ey  wodm _ Fo_  Fat Fa,

z I+ wH

= % T L ! z, W)e S y

VC I+zH (2, w)
Note that m’' = — 77a/77m < 0 since Ve and T BTE negative. We want
to show

2 ’ '

(25) dm _ om' dz | om’dw .

do? 0z da ow do

Since z and w are position for the case under consideration, we have
from the definition of z and w that

dz w ¥e

= == m <0
da a+ <
and
o —
(_i_ui_ ﬁ+~/cm’<0.
da o lo4

Thus (25) will be verified if we show that ém'/0z and om'/ow are
negative,

Using the identities in F, G, H and I listed above, we find that

om’ ,[1+ 2G zG+H]
I+ wH I+ zH

and
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dm’_m,[H—l—wG__ G ]
I+wH I+z2HJ

Since m’ < 0, we need only show that the terms in the square brackets
are positive on S. We do this by showing that

(i) I+zH<O,

(ii) I+ wH>0,

(iii) ¢G>0,

(ivy H+2G>H+ wG>0
on S for ¢ sufficiently large.

We first note that on S,

H(z, w) = Uy(w)[Uy(2) — Ux(2) Us(w)/ Uy(w)]

U (w)[Ui(z) — Ux(2)U{(2)/ Us(2)]

= [Ui()U;(2) — Us(2) Ui(2)] Un(w)/ U:(2)]
= Us(w)/U:(2)

Il

since F'(z, w) = 0 and the wronskian W(U,, U,) = 1. Similarly, it may
be seen that I(z, w) = — UJ(z)/Uy(w) on S. Thus, IH= —1 and
since H and I have finite values on S, they must be nonzero and of
opposite sign there. At w = 0 we see that F'(z, 0) = U,)(z) = 0 gives the
value z =2,=1.5 - - - and hence I(z,, 0) = — U/(z,) = .9 > 0 (see [7] p. 30).
We may thus conclude that H(z, w) <0 and I{z, w) >0 on S. We
note that z > w so that

I(z, w) + zH(z, w) < I(z, w) + wH(z, w) .

But, by (24), we know that the ratio of these two quantities is
negative so that (i) and (ii) must be satisfied.

To prove (iii) we first show that G(z, w) must be of one sign on
S. We consider the lowest eigenvalue v, of the system

(26) U’ +vo(x)U=0, U0 =U@=0, z¢cl0a

with o(z) = ¢ — @/2 + m/a. Solving this system we find that v, =
oi(a*/m)ja® where ,(K) is the least positive root of the equation
G((1/K + 1/2)0, /K — 1/2)5) = 0, Now suppose that G(z, w) = 0 for
some point in S. By the definition of z and w and the fact that »(a, m) =

¢ we see that
(B 5) (2 - 5) -0,

But then 7 = (¢/a)® must be an eigenvalue of the system (26). By
Nehari’s comparison theorem the lowest eigenvalue of this system is
strictly greater than 7 so that » can not be the lowest or any other
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eigenvalue of (26). Thus G does not vanish on S and computing G
at the point corresponding to w =0 we get G(z,0) = .48 .-- >0,
Hence (iii) is established.

The first inequality of (iv) now follows from (iii) and the inequality
z>w. We show that the last inequality holds for z = ¥ ¢ (m/a + a/2)
and w = ¥ ¢ (m/a — a/2) sufficiently large and that this is sufficient for
our purpose. We will need an asymptotic expansion of H and G.
These can be obtained from the asymptotic formulas for the funda-
mental solutions of the Airy equation which in turn can be obtained
from the asymptotic formulas for the Bessel functions of order
+ 1/3, + 2/3 (see [7]). We thus find that

Uy(s) = I"(2/3)3"° oS <833’212— 71') I 0( 1 ) ,

1/?81/4 NE
_ I'(4/3)3%% . (8s%* — 1 1
Ui(s) = L0 sin (B + o( 7).
rray . —1(2/3)3Y8s . (833/2 -7 1
Ul(s) = Vad sin D ) + O(s’”‘*) ,

and

o (4/3)8s0 8 g\ 1
U2 (S) = '1/7 COS( 12 ) + 0(-;—5/—4> .

From these formulas it follows directly that

F(z, w) = i_%y cos (4(z3’2 — w?) + 7r> . 0( 1 > ’

V'3 6 w®
Gz, w) = %(iz"-)' cos <4<z3’2 = g’sm) —7) + 0(7;];3) :

and

where have used the relation I"'(p)I’(1 — p) = m/sintp and the appro-
priate trigonometric formulas.

Since F' vanishes on the set S it follows that the cosine term
can be made arbitrarily small for z and w sufficiently large. It then
follows that the expression for G is arbitrarily close to

1%4%)1/4 cos {[4(z"* — w**) + 7]/6 — 7/3}
w\Y

= ()" sin 42 — ) + 216 = (2"
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and in a similar manner we see that H is arbitrarily close to
—1/V"3 (wz)"*, We finally conclude that H + wG can be made
arbitrarily close to

1 1
Em—[wﬁ“ V3w “]

which, from the definition of 2z and w, will be positive for ¢ sufficiently
large provided m/a — «/2 > 0. But this is just the case under con-
sideration. The case where a® = 2m will be discussed at the end of
this section.

We turn to the case where Ha® > 2m. Here we take H = 2 and
consider the curve defined by #(a, m) = 1/2. The g(a) is determined
by the least positive root m, of the equation

Ul (vm) = (Vi — @) Ul(Vm) .
We let ¥y = 1" m, so that
(27) a=fly) =y — U (y)/Ulw) .

It has already been shown that 7, and 7, are negative so that da/dm =
—n/Ne < 0. This implies that f'(y) < 0. Now

d*a o @_>2 ' _C_Zz_y__

L2~ (SL) + rw L
where f'(y) < 0 and d*/dm* < 0. Hence d*a/dm* > 0 if f"(y) > 0.

To show that f”(y) >0 we first investigate the range of y
determined by the condition a®*>m or « >y =Vv'm. We show that this
condition requires that ¥y < y, where y, = 1.51 ... is the least positive
root of Uj(s) = 0. For any value of y we have that — Uj(y)/U/(y)
has the derivative —y/U/*(y) < 0 and hence is decreasing except at
zeros of U!(y) where it has asymptotic. In particular, it is decreasing
for ye(0,s,) where s, is the least positive zero of Uj(s) = 0 and has
a zero at y, <s,. Comparing — U/(y)/U{(y) with a« — y, we see that
unless y < ¥,, the value of y determined for a given a by (27) satisfies
y > a which is a contradiction. In particular, when ¥y = y,, @ = ¥,.

To show f”'(y) > 0 for y<€]0, y,|, we use the fact that U, decreases
from the value one at ¥y = 0 to a value Uy, > .48 at y,, (see [7]).
Calculating f”(y), we have

f'(w) = — [Ui(y) — 2y’ U.)I/UIW)F .

Since U](y) is negative we want the expression in the square bracket
in the numerator to be positive. But

~Uiw) = - [orwat = | cuwat < v
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since 0 < U,(t) < 1 for t¢(0, y,). Hence

U/ — 2?/2U1<y) = — ¥/2 4+ 2¢°U(y)
= 2y [Ui(y) — 1/4] > 0,

which proves f”(y) > 0, y < (0, y,].

Thus, in both cases Ha® > 2m and Ha® < 2m, the level lines are
convex. If Ha® = 2m, we use the fact that these lines have a con-
tinuously turning tangent so that the convexity is proved for all

cases,

4. Bounds for the higher eigenvalues. While the proof of
Theorem 2 was rather long, it leads to an immediate proof of the
following:

THEOREM 3. Let A, o] be the nth eigenvalue of a string fixed
under unit temsion between x = 0 and x = a. If the density function
poe E(H, M), then

SH > it (CH
(28) MlolatH = t1< nM)
where t,(K) 1is the least positive root of (4) when K =4 and of (5)

when K > 4. Moreover, equality holds if and only if p = 0, where
0, is defined by

M a
Hlz — & el 0= 2
<x 4n>+ a _x_2n ’
@) o) = {0 (L-2) —=r=—- :
Ool®) = n ’ on n
oo (o + £2) . k-D%szeske
n n n
(=28, -+, m) if @HnM < 4 and
™
0 0<g=< 2 _ /M
’ _x“Zn 1/nH ’
H@-i) HM e Mo 0
2n n 2n nH 2n
(30) o) = u
e _ b <=2
Po(n x) ’ Zn_x_n ’
po<w+k—“) . k-1Di=aske
n

(=28, +++,m) if a’H/nM > 4.
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Proof. We give a proof by induction. For # = 1, the theorem
is a restatement of Theorem 2. Because of the nature of the induc-
tion, it will be necessary to prove the theorem for » = 2 before going
to the general case. Thus, we start by considering the second eigen-
value 2\,Jo] and the associated eigenfunction u, of the system (1).
This eigenfunction has exactly one nodal point in the open interval
(0, ) which we denote by a. X\,Je] is also then the lowest eigenvalue
of each of the differential systems

uw”’ + ro(xyu =0, #(0) = w(@) =0, x [0, a]
and
u” + ro(@yw =0, ww) = u(a) =0, rxela, al.

By Theorem 2, we conclude that

(31) nlo] = t?(“QH ) /a3H and A[o] = t1<52H )3/,331{

m m'

where ¢ + B =a, m = Sa o(x)dx and m’ = M — m.

We now use the szoxme argument as that used in the proof of
Theorem 2. We increase or decrease m so that m + m’ remains con-
stant and the right hand quantities of the inequalities (31) become
equal. For each a there is determined a unique value of m so that
a function f is defined, The minimum of ¢(a*H /m)a*H on the graph
of f is then found to occur at « = a/2, m = M/2 just as in the proof
of Theorem 2, Hence we find that

olaH = & (22—]%) .

To complete the induction, we consider the nth eigenvalue \,[p]
and the corresponding eigenfunction «, of (1). This function will have
n — 1 distinct nodal points z,(k =1, ---, 2 — 1) in the open interval
(0, ). We assume that these points are ordered, i.e., xz, < ,.,, and
consider the differential systems

(32) w’ + NPy = 0, w(0) = u(x,) =0, xel0, z,]

and

(33) u" + APo(x)u = 0, u(x,) = w(a) =0, x €[, al

where 2z, is the smallest nodal point. Then X,[0] is equal to the

1 We note at this point that it is easy to prove the theorem for n =27, ¢ a
positive integer. One would hope to be able to carry out a reverse induction as
in [6]. Unfortunately, the method used there cannot be directly applied here.
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lowest eigenvalue \{" of the system (32) and it is equal to the (n — 1)
st eigenvalue \{?;, of the system (33). Then corresponding eigenfunc-
tions are just u, with the domain restricted to [0, x,] for the system

(32) and to [z, a] for the system (33). From Theorem 2, we have

(34) wlol = = 6(B2) farrt = g, m)

where m, = rlp(m)dm. By the induction hypothesis
0

(35) nlol = a2 2 8(C1) o = p(a, m)

where a = (& — @,)/(n — 1) and m = (1/(n — 1)) ’ o(x)dx. Equality holds
in (34) if and only if p is defined by (15) or (16). Equality holds in
(35) if and only if p is defined by (29) or (30) with n replaced by
(n — 1), M/n by m, and a/n by «. Since the function defined by (29)
or (30) is periodic of period (@ — x,)/(n — 1) the nodal points of the
(n — 1)st eigenfunction will occur at the points «, + ka(k =1,2, ---,
n — 2). By holding the string fixed at the last nodal point we get a
string fixed between x, and x, + (# — 2)a whose (n — 2)nd eigenvalue
is equal to 7n(a, m) as defined in (35). This is also the lowest eigen-
value of the piece of the string between z, + (n — 2)a and a.

We want now to piece together the part of the string between 0
and 2, with density defined (15) or (16) and that part between x;, and
2, + (n — 2)a with density defined by (29) or (30) in such a way that
the (n — 1)st eigenvalue of the resulting string fixed between 0 and
2, + (n — 2)a is less than A,[0]. This can be done by increasing (or
decreasing) the mass of the string between 0 and x; and decreasing
(or increasing) the mass of the string between 2, and z, + (n — 2)a
in such a way that the total mass between 0 and «, + (» —2)a remains
constant and such that the equality

(36) n(xy, m, £ 0) = n(a, m £ 0/(n — 2))

results. Here 0 denotes the change in the mass m,. This is essentially
the same argument used in deriving (19) in the proof of Theorem 2.
Equation (36) defines a function f, We assume as part of the induc-
tion hypothesis that the minimum value of 7 over the graph of this
function occurs at the point ([#, + (n—2)a]/n — 1, [m, + (n — 2)m]/n — 1),
and that this value of % is the (n — 1)st eigenvalue of a string with
density defined by (29) or (30) with = replaced by n — 1, M/n by
[m; + (» — 2)m]/(n — 1), and a/n by [z, + (n — 2)a]/(n — 1). We now
repeat this process, first fixing this new string at its first nodal point
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and adjoining the right-hand piece to that part of the string between
2, + (n — D and a. Continuing this process indefinitely, we define
a sequence of numbers

N, m)p = 1,2, --+)
all less than \,[0]. We show that this sequence converges to the
value 7n(a/n, M/n).

We see that the above process generates a sequence of first nodal
points which satisfies the recurrence relation.

20 = [2 + (n — 2ap ) n — 1)

with the initial conditions «{" = @, and «® = [, + (n — 2)a]/(n — 1). This
may be solved by letting ' = »* and determining ». We thus find that

—1 Vv
x(y):61+< C;
n—1

where ¢, and ¢, are constants to be determined from the initial con-
ditions. We see immediately that x*' — ¢, as v— o where ¢, =a/n.
Similarly m{* — M/n. By the construction of the sequence {n(x{*, m{)}
we have

Mol = nla/n, Min) .

This proves Theorem 3.

5. Remarks. The methods used to prove Theorems 2 and 3
can also be used to find lower bounds for the eigenvalues of a vibrat-
ing string when the end points of the string are free, i.e., when
#'(0) = #/(a) = 0 and when an end is fixed and the other is free, i.e.,
#(0) = w'(a) = 0. We do not state these theorems but merely note that
for the free end point problem the lower bound of the nth eigenvalue
t,lo] is the same as the lower bound for the (n — 1)st eigenvalue of
the fixed end point problem. The same can be said for Krein’s results
quoted in the introduction.

For the fixed free problem the lower bound for the nth eigenvalue
t.Jo] is the same as the lower bound for the (2n)th eigenvalue of
the fixed end point problem which is obtained from the fixed free
problem by defining the density o to be symmetric about © = a and
considering the system

w” + No(x)w = 0, u(0) = u(2a) = 0

xe[0, 2a].
Finally, we note that the methods used in this paper can be used
to obtain the lower bounds given by Krein for the nth eigenvalue of a
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string with density | o(z) | < H. Our methods also yield bounds for
the nth eigenvalue of a string with a continuous concave density,
i.e., where

o(2E2) 2 L) + o).

These bounds will not be sharp except in the case of the lowest
eigenvalue,

In general, it is to be expected that lower bounds will be obtained
if the extreme eigenvalue, which corresponds to 7n(«, m) in this paper.
yields convex level lines in the a, m plane whenever it is set equal to
a constant. If we apply this idea to the concave case just mentioned,
the extreme eigenvalue turns out to be p,/am where p, is a fixed
constant so the level lines are given by m = const./a which is clearly
convex,
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