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Among those algebras whose multiplication does not satisfy
the associative law is a particular family of noncommutative
Jordan algebras, the generalized Cayley-Dickson algebras.
These are certain central simple algebras whose dimensions
are all powers of two. Most of this paper is concerned with
giving the classification up to isomorphism of those of dimen-
sions 16, 32, and 64 and determining the automorphism groups.
In addition to this some generalized Cayley-Dickson division
algebras are constructed. Precise criteria for when the 16-
dimensional algebras are division algebras are formulated and
applied to algebras over some common fields. For higher
dimensions no such criteria are given. However, specific
examples of division algebras for each dimension 2! are con-
structed over power-series fields.

DEeFINITIONS. Let us recall the definition of our algebras. Let
A be any algebra (not necessarily associative) with an involution a — a*,
that is, a nonsingular linear transformation on 2 such that (ab)* = b*a*
and (a*)* = a. If v is a nonzero element of the ground field, we
define the algebra A{y} to be the set of pairs (a, b) with ¢ and b in
A and with addition and scalar multiplication defined in the obvious
way. To avoid confusion with bilinear forms which will be appearing
let us write u for (0,1) and a + bu for (a, b). Multiplication in ()
is then defined by

(o + bu)(c + du) = (ac + vd*b) + (da + bc*)u .

The map a— a + Ou imbeds 2 isomorphically in {v}, and a + bu —
a* — bu extends the involution to A{v}. If 1 is a unity element of
9, then 1 + Ou is a unity of A{7}.

A generalized Cayley-Dickson algebra 2[, of dimension 2! is con-
structed by choosing nonzero elements v, ---, v, in the ground field
%. Then we set %, = F (with the trivial involution a* = @) and
W =W {7} =W PU,_u;, for ¢t =1,2,---,¢. The norm n(x) =
xe* = g*x of x in A, is a multiple of the unity element and can be
linearized to give a nondegenerate bilinear form on U,:

(@, ) = é— [0 + ) — n(@) — ()]

I

%(wy* + ya*) .

We note that if n(x) =0, then x has the inverse n(x)~'z* and
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nw(x") = n(x)"'. For A; the norm can be seen easily to be equivalent
to

(1) (23 — 7@d) — va(@; — vl — vsl(@ — vixd) — (2l — )],

where the first term comes from the restriction of the norm to F1
and the other seven terms from the restriection to the subspace 3 of
all z such that (x,1) = 0. Also for £ <3 only, 2, is a composition
algebra: n(xy) = n(x)n(y). (See [2].) The algebras 2, are generalized
guaternions and 2; the usual Cayley-Dickson algebras.

Suppose that %A, A, ---, A,_, is a sequence of subalgebras of A,
and v, ---, v, is a set of generators for 9, such that v =9; =0,
=W --- A, ¥, dimension A; =2¢, and A; = A,_, + A;_v;.
Suppose further that multiplication in ; can be written as

(2) (a + bv))(e + dv;) = (ac + 6,d*b) + (da + be*)v, .

Then we will call v, ---, v, a normal set of generators for 2,. In
general, 2, has normal sets of generators other than the set u,, ---, u,
used in the original construction of 2,, We recall that for U, all
normal sets of generators can be found in the following way [2, pages
6-8]. We choose v, to be any element of [, such that (v, 1) = 0 and
v} = 0, For v, we then choose any element such that (v,, 1) = (v,, v,) = 0
and 22 = 0. Finally, v; can be any element such that (v,, 1) = (v;, v,) =
(v, v5) = (v5, v,0,) = 0 and v; = 0. The known property [2] that A,
has zero divisors if and only if it has an element a = 0 such that
n(a) = aa* = 0 will be used in §3. The multiplication table for 2,
in terms of a normal set of generators can be determined from equation
(2). In particular, for 2[, we have the following products, which we
will use in §3: (vw)(v.ws) = (V)(V5), V3(V10) = — (V,,)V5, V(V,05) =
(0,005, V¥, = — V0, AN V(V,05) = — (V,0:)Vs.

In %, let S be a subset of T =1{4, ---,¢} and let a be in the
8-dimensional subalgebra generated by u,, #,, and w,. If the integers
1,7, -+ of S are written in increasing order, we define ay to be
(+ - +((au)u;)+++). Then every element z in 2, can be written uniquely

in the form >igcp as.

2. Automorphisms. The structure of the automorphism groups
of the algebras 2; can be found in [2]. To compute Aut(,) for
t = 4 we will need Schafer’s result [4] that for ¢t = 4 the derivations
DA,) of A, are all of the form a + dbu — aD + (bD)u, where D is a
derivation of ,_,. If &* denotes the enveloping algebra (not necessarily
with unity element) of a set & of linear transformations on a vector
space, then for ¢ = 4 any element of D(A,)* is of the form a + dbu —
oF + (bE)u, where F is in D(A,_)*.
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Let A, = A,_,{v} and assume that the ground field contains
B = 1/(—38y). Let 6 be an automorphism of 9, ,. Then we can readily
check that the following transformations are automorphisms of ..

6" a + bu — af + (bO)u,
& a+ bu—a — dbu.
. a+bu—»%[a+3a*+,@(b—b*)]

+ % [b + 3b* + By—(a — a*)]u .

The following products are also easily checked: 8" = 0, e’ = 0'c,
e =1, =1, ep = +’¢ (composition reads from left to right). There-
fore Aut (2,) has a subgroup G isomorphic to Aut (U,_,) x S,;, where
S, is the symmetric group of degree three. If the ground field does
not contain B, then + does not exist and Aut (2,) has a subgroup G
isomorphic to Aut (U,_,) x S,, where S, is the group of order two.
Here are the two main theorems.

THEOREM 1. For t = 4,5,6 and for ground fields of character-
istics mot two or three, Aut 2,) = G.

THEOREM 2. For t = 4,5,6 and for ground fields of character-
isties not two or three A, = A,_{v} and A, = W,_{v'} are isomorphic
if and only iof A,_, and WA,_, are tsomorphic and v = N7 for \ in
the ground field.

We will prove these theorems in detail here for ¢ =4 only and
will sketch the proof for ¢ = 5,6. We conjecture that both theorems
are true for all ¢ = 4.

First we provide an elementary characterization of u = wu,.

LEvMMA 1. If v is an elemsnt of W,(t = 4) suzh that (v,1) =0
and

(3) x(xv) = 2o, (ve)x = va?

for all x wn U, then v s a multiple of w.

Proof. Let ® =a + bu and v = ¢ + du. After expanding (3),
among the conditions we obtain on ¢ and d by equating appropriate
terms are a*(d*db) = (a*d*)b and b(c*a*) = (be*)a*. Hence, ¢ and d
are in the middle nucleus of ¥, ,, which contains only scalar multiples
of 1 [4, Equation 14b]. Then since (v,1) = 0,¢ = 0. This proves
Lemma 1.

Our knowledge of D(,) can be used to advantage with the follow-
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ing lemma about D(2,).

LEMMA 2. DQL) maps Us into . Furthermore, DRL)Y* acts as
the full set of linear tramsformations on A,

Proof. Let w, ---, w, be a basis of A3 such that w; =0 and
(w;, w;) = 0 if 7 % j. Then if 7 = j there is some k such that the
ordered triple L = {v, = w;, v, = w;, v; = w,} is a normal set of gene-
rators for ;. Then a short check will show that the map D, such
that 1D, = 0, v.D; = v, v,D; = —n(v,v7 )0, (v,v,)D; = 0 is a derivation
of 2,. This can be extended to A, by setting v,D; = 0. Then

(v5) Dy = V05, (v:0) D = — (V7).

and (vv,)vsD; = 0. The triples M = {v,, v;, v,} and N = {v;, v,, v,v,} are
also normal sets of generators. If E;; = D,D,D, in DA)*, then
w,E;, = 0;;w;. These E;; generate the full set of linear transformations
on AY. To finish the proof of Lemma 2 it is sufficient to show that
if Dis in D), (a,1) = 0. and a* = 81 # 0, then (aD,1) =0, Let
aD = al + b, where (b,1) = 0. Then

0 = &’D = (aD)a + a(aD) = 2aa + (ba + ab) = 2aa — (a, b)1 .

Therefore @« = 0, This proves Lemma 2.

We turn first to the proof of Theorem 2, Let @ be an isomorphism
of 2, onto A;. Lemma 1 assures us that w,p = \uj. Hence (u})p =
(v D = v, 1" = A (ui)* = Avil” and v, = A,. For a = 0 in 2; such that
(a,1) = 0, let

ap = % (ans)s

where the 7y are linear transformations of 2; into 2. Evidently
P ' DAY o = DA*., Therefore 2; is spanned by 1 and

Z (a@(as)*ﬁs)s = ag(%{t)*@ = a,@@(%;)* = Z(((W]S@(QIQ)*)S .

The preceding equation and Lemma 2 imply that (anp,, 1’) =0 and if
ang = 0 for some a, then 7y = 0.

We fix some R & T such that 7; == 0 and denote 7, by . Now
we will show that for all U & T, 5, = aym, for ay in the ground field.
If for some a, any is not a multiple of an, we find E’ in DR)* such
that any,E’ = 0 and anE’ = 0. Since there exists an E in D(U;)* such
that > (aE7ns)s = >, (ansE')s, anE’ = 0 implies that «FE 0, and
aE7n; = 0 implies that », = 0. Hence ay =0 will do for a,. Now
we can write ap = >, (asan)s. To show that ay does not depend on
a, let bp = > (Bsbn)s. Choose E in D(A)* such that aE =b. Then
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> (Bsbn)s = bp = ap(p™Ep) = 3 (asank')s

for some E’ in DRG)*. Since ar = Br=1,bp =ank’. Therefore
ay = Bs for all S. We know that (azn,1) =0. Also, (ay, bp) =0 if
and only if (@, ) = 0. To see this choose @ such that n(a) = 0. Then
n(a) = nlap) = an(an) + 0, for some nonzero constant « which does
not depend on a. Linearizing, we obtain (a, b) = a(an, by). Finally for
T =4, u,p = > ay for ¢’ in A, Since u,DR,)* =0, /DAY* =0 and
every o' is a scalar multiple of 1. Altogether,

(4) ap = i as(an)s ,
(5) U = 3, Bisly .

Substitution of (4) and (5) into (zy)p = (x@)(yp) for all &, y in A,
yields a set of quadratic equations that can be used to verify Theorems
1 and 2. Their solution for ¢ = 4, which we now give in detail, is
the easiest, Let u, =wu, and for a in U; let ap = a(an) + Blan)w/,
where a =0 or 1. If a =0, %sp is spanned by Wu' and 1’. Since
this set is not closed under multiplication, « = 1. Let (a,1) = (b, 1) =
(a,b) = 0. Then (ap)* = —ay, (n)* = —by, and (an)(bp) + (bn)(an) =
—[(an)(dn)* + (by)(an)*] = —(an, by) = 0. Therefore

(ab)p = (ab)y + Blab)yu’
= (an + Blan)w')(by + Lbpw)
= (an)(bn) + V' (bn)*(an) + Bl(dn)(an) + (an)(bn)*|u’
= (an)(bn) + vV'B(an)(by) — 2B((an)(bn)u’ .

Hence
(6) (ab)y = (1 + "B (an)(by) ,
(7) (ab)y = —2(an)(dy) .

Since these two equations are linear in a and b and true if (@, b) = 0,
they must be true for all a, b in . Equation (7) implies that —2y
is an isomorphism of U, onto 2A;. This proves Theorem 2 for ¢ = 4.

To prove Theorem 1 for ¢t =4, we assume that A, = A, The
foregoing arguments show first that up = +u. Hence, by replacing
@ by @e if necessary, we may assume that wp = u. As before, if
(@,1) =0 and a % 0, then ay = 0. We may also assume that 8 == 0,
for otherwise 7 is already an automorphism of 2, and ¢ =7%'. The
remaining computations again lead to equations (6) and (7). Equation
(7) shows that —2y is an automorphism of 2;, and equation (6) shows
that 8 =1v/(—38v7). Thus ¢ = (—2p)'ye. This proves Theorem 1 for
t=4.



420 ROBERT B. BROWN

3. Division algebras. Over the real field, the rational field,
p-adic fields, or finite fields, 2[, is never a division algebra. However,
we can exhibit division algebras over some other fields. Since A, is
finite-dimensional, it will be enough to find algebras without zero
divisors. The next theorem is about algebras 2,.

THEOREM 3. U, = A~} is a division algebra if and only if U
18 a division algebra, v is not the norm of an element a in A; and
—v 18 not the norm of an element x im AL,

Proof. The necessity of 2, being a division algebra is clear. If
v = aa*, then (@ + u)a* —u) = 0. If —v = 2x* we extend 2 to a
normal set of generators v, = x, v,, v; of A;. Then (v,v, — vouw) (Vs +
va) = 0. Conversely, suppose that 2, is a division algebra and U,
has zero divisors: (a + bu)(c + du) = 0. Then ac + vd*b =0 and
da + be* = 0, and none of a, b, ¢, d can be zero. Then ¢= —yn(a)~'a*(d*b)
and da = b[yn(a)~(b*d)a], so that

(8) b*(da) = yn(baWb*d)a .

The subalgebra generated by b, d, and a is either associative, in which
case v is a norm, or is the whole of ,. In the second case we can
obtain a normal set of generators =z, y, z by setting

b* =8+ 2, d=9l+axv +y,a=rN+ Bx + oy + exy + 2,
where

@, =W =%1=Uu2r)=%22=©Ey =%y =0.

Multiplying out (8), we find that in actuality o* = 2, d =y, a = 2.
But x(yz) = —(2y)?, so that —v = n(ab™'). Unfortunately these calcula-
tions do not generalize to all 2, because the alternative law (in U,)
is used in obtaining (8).

Over a finite field a quaternion algebra 2, connot be a division
algebra, for it would then have to be commutative. Since every 2,
(t = 2) contains an 2,, there are no division algebras U, for ¢ = 2 over
a finite field. Over p-adic fields every quadratic form in at least five
variables has a nontrivial zero [3, §63]. Therefore, there are no
division algebras U, or A, (t = 4) over a p-adic field.

Over the real field or a real algebraic number field let 2[, be the

algebra defined by v, = v, = v; = —1. By (1) its norm form is equivalent
to
(9) n(x) = af + @) + af + @i+ @3+ o) + a7 + a3,

and it is a division algebra because (9) never gives a nontrivial repre-
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sentation of zero over a subfield of the reals. (For the real or rational
field this is the only division algebra 2, [1, §10]. Next, v = n(a) or
—v = n{x) for some x such that (z, 1) = 0 if and only if the quadratic
form (10) or (11) below, respectively, has a nontrivial zero.

(10)  m(x) — voy = @i + @ + 25 + @ + @f + a5+ o + 2y — vag .
(11) x4 o) 4 o} + af + oy + ad -+ ool 4+ vl

Over the real field (10) is indefinite and has a zero if ~ > 0, (11) if
v < 0. A result of Hasse in algebraic number theory tells us that
over an algebraic number field a quadratic form in at least five
variables has a nontrivial zero if and only if all of its real conjugate
forms are indefinite [3, §66]. Over the rationals the only real conjugate
forms for (10) and (11) are (10) and (11) themselves, one of which is
indefinite. Hence, over the real and rational fields there are no division
algebras for 20, thus none for 2, (¢ = 4). However, suppose we choose
a positive real number A whose square roots are not rational, let
vy=1"N or —1V/\, and let the ground field be the real quadratic
extension QJv] of the rational field £i. Then (10) has the real con-
jugate forms n(x) = v« one of which is definite. Hence (10) has no
nontrivial zeros; similarly, neither does (11). Therefore %, is a division
algebra,

We can use a different method to construct for every ¢ a division
algebra A, over a suitable field. ILet & be any field of characteristic
not two, and let X, - -+, X, be t algebraically independent indeterminates
over . For ¢ =1, ..., ¢t we construct the algebra ; over the power-
series field §{X,, .-+, X;} by setting v, =X, for k=1, ...,4. Let
A = G

By induction on 7 we now show that ¥, is a division algebra for
i=1, -+, ¢, Assume that %, , is a division algebra and suppose that
©x=a+ bu; and ¥y = ¢ + du; are nonzero elements of A, such that
2y = 0. Then

(12) ac + X;d*b =0 and da -+ be* =0.
As before, a, b, ¢, d must be nonzero, and we can write

0= 0, X" + Qp X+ oen
b=0,Xr+ b, X+ -0
¢ =, XP + cpu XPT A o0
d=d,X{+ dy XF A+ .-

b
’

’

where all the a, b, ¢, d, are in 2, ., and «a,,b,, ¢,, d, are nonzero.
By 12), m +p=1+¢q -+ n and m + ¢ = n + p. Adding these two
equations, we obtain 2m + p + ¢ =2n + p+ ¢+ 1. But 1 is not an
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even integer, so that 2, must be a division algebra.
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