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A Stone ring is a partially ordered ring K with unit
element 1 satisfying (1) 1 is positive; (2) for every x in K
there exists a natural number n such that nΊ — x belongs to
K; and (3) if 1 + nx is positive for all natural numbers n
then x is positive. Our first theorem: Every Stone ring is
order-isomorphic with a subring of the ring of all continuous
real functions on some compact Hausdorff space, with the usual
partial order. A corollary is a theorem first proved by Harrison:
Let K be a partially ordered ring satisfying conditions (1) and
(2), and suppose the positive cone of K is maximal in the
family of all subsets of K which exclude —1 and are closed
under addition and multiplication. Then K is order-isomorphic
with a subring of the reals.

The present paper is inspired by David Harrison's recently begun
program of arithmetical ring theory where the basic objects are primes
and preprimes; the positive cones of a ring are example of preprimes.

Throughout the paper, K will be a ring with unit element 1, and
N will denote the set of positive integers. A preprime P in K is a
nonempty subset of K excluding —1 and closed under addition and
multiplication. A prime in if is a preprime maximal relative to set
inclusion. A preprime P is infinite provided it contains both zero
and 1, and is conic if P f] ( —P) = {0}. A conic preprime is simply a
positive cone and induces a partial order: x^y<=>y^x<=>x — yeP.
A preprime P is Archimedean if for all x in K there exists a natural
number n with n — x in P, (condition (2) in the definition of Stone
ring) and is (AC) if from 1 + nxe P for all ne Nfollows xe P (condi-
tion (3)). We redefine a Stone ring as a pair ζK, P> where P is an
infinite conic Archimedean (AC) preprime in if. An imbedding of
<if, Py in <if', P'> is an injective ring homomorphism ψ: K —+ K' such
that P = ψ~\Pf). If X is a compact Hausdorff space, C(X) denotes
the ring of all continuous real functions on X, P(X) denotes the subset
of nonnegative functions. If K is any subring of C(X) then
ζK, K n P(X)y is a Stone ring. The principal tool in the proof of
Theorem 1 is the Stone-Kadison ordered algebra theorem [3; Theorem
3.1], which characterizes C(X) as a complete Archimedean ordered
algebra. To imbed a Stone ring <JSΓ, Py in such an algebra we show
that K is torsionfree, imbed it in a divisible ring KNί put a norm on
KN and then complete it to if*. At each step we have an imbedding
of Stone rings:
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where the last is Kadison's order-isomorphism. If P is a prime then
so is Pπ. [An order-isomorphism is an imbedding onto.]

In the proofs following, <(if, P> is a Stone ring, JV is the set of
all positive integers.

PROPOSITION 1. If n e JV, a e K, and na ̂  0 then a ^ 0.

Proof. By the unique factorization in JV, it is enough to prove
the proposition for the case where n is a prime number. Suppose for
all primes q < p and all ae K, qa ̂  0 implies a ^ 0β Then for all
n < p and all a e K, na ̂  0 implies a ^ 0. Now suppose that pa ^ 0
but a ̂ t 0. By the Archimedean property choose m in JV with
m + α ̂  0, α = m - 1 + ^ 0. Then px :> 0,1 + x ^ 0 and for all w
in JV, 1 + (pn + ώ)α? ̂  0, if d — 0 or cί = 1. [In case p = 2 this
implies that 1 + kx ̂  0 for all &, so a; ̂  0 by (AC), a contradiction;
hence 2α ̂  0 implies a ^ 0.] Now let 1 < d < p, with d in JV. Since
p is a prime there exists e in JV, with 1 < e < p, βd ~ 1 + pn, for
some n in JV. Then β(l + dx) — e + (1 + pπ)x = (β — 1) + (1 + x) +
(2m#) ^ 0. Since e < p this implies that 1 + dx Ξ> 0. So for all &
in JV, 1 + (pk + d)α = 1 + dx + p&sc ^ 0, Og d ̂  p - 1. That is, 1 +
nx g: 0 for all π in JV. By (AC) again, x ^ 0, a contradiction. So
α ^ 0 and the induction is complete.

Now put

= {kin; keK,neN} ,

Pjsr = ίί>M; P e P , ̂  G JV} .

φ:K->KN,φ{k) = fe/1 .

PROPOSITION 2. <iΓ^, P^> is also a Stone ring. If P is a prime
then so is PN. φ is an imbedding.

Proof. That φ is injective follows from Proposition 1. If k/n,
for k in K,n in JV, belongs to P^, then & belongs to P. For &/w
in P^ implies k/n = p/m, for some p in P, m in JV, so mA: = npeP.
By Proposition 1, J G P . Hence φ is an imbedding. The preprime,
infinite, and conical properties of PN follow easily from the correspond-
ing properties for P. For the Archimedean property, let k/m be
arbitrary in K# (k in K, m in JV) and choose n in JV with n > k.
Then n — k/m = (nm — k)/m belongs to P^ since nm > k,me JV. Now
if 1 + n(k/m) ̂  0 holds in KN, with m in JV, k in Z", and for all n
in JV, then for all n, φ(l + nk) = 1 + mn(k/m) e PN. Since φ is an
imbedding, 1 + nk e P. By the (AC) property for P7keP, k/m e PN.
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This establishes (AC) for PN. Finally let P ' be a preprime containing-
P# and let P1 = φ-\Pf). Then P2 is a preprime containing P. If the
first containment is proper so is the second. This proves that if P is
a prime then PN is a prime.

NOTE. The additive group of KN is divisible. If K were already
divisible then φ would be an order-isomorphism of ζK, P> onto
<i£#, Pχr)>. The rational multiples of 1 in JK̂  form a field order-
isomorphic with Q.

Now define £ on KN by

ί(aθ — inf {r; — r<x<r,re Q).

PROPOSITION 3. The function t is a norm on KN\
( a ) t(x) ^ 0; ί(a) = 0 if and only if x = 0.
(b) t(s + y) ^ ί(α?) + % ) .
(c) t(xy) £ t(x)t(y)
(d) ί(ra) - | r | ί (α) for r in Q.

Put JSΓ* equal to the completion of i£^, P* equal to the closure of P#
in if*. Then <i?*,P*)> is a Stone ring and an Archimedean ordered
algebra as defined by Kadison.

Proof. The property (a) follows from (AC). Properties (b) and
(c) follow from: if — r < x < r, — s < y < s then — (r + s) < x +
y < r + s, and — rs < a y < re. See [l], §2. The proofs there make
no use of commutativity or of multiplicative inverses. Property (d) is
a consequence of: — r < x < r if and only if —rq<qx<, rqy where q
is a positive rational. It is clear that t( — x) = ί(a?) and for rational
r, ί(r) = I r |. We now identify JSΓ̂. with its injection in its completion
if* and note that P* n KN = P^: for if ft e P* n if̂ r then ft = lim pnf

pnePN, and pw may be chosen so that —1/n < k — pn < 1/n for all
neN; it follows that 1 + nk > wj>Λ > 0 for all ne N and thence by
(AC) that kePjf. The reverse inclusion is obvious. It remains to
prove that P* is an infinite conical Archimedean (AC) preprime. It is
certainly closed under addition and multiplication. Let xe P* Π ( —P*).
Then there exist positive sequences pn and qn with x — limp%, — x =
limg%, 0 = \\m(pn + #J. Thus if ε is any positive real then for all
large n, 0 ^ pn ^ p% + qn < ε, so a? = lim #>„ = 0; P* is therefore coni-
cal. Let xn e KN, with x — lim a?n. The Cauchy sequence {xn} is bounded
in norm so there exists an integer m with m > xn for all n. Hence
m — x — lim (m — xn) e P*, m > x. This shows P* is Archimedean.
Now let 1 + M G P * for all n in N (xeK*). P*, as closure of P,
is closed and hence contains x = lim(# + 1/w), since x + 1/n belongs
to P*. Thus P* is (AC). That l e P * and - l g P * are obvious, and
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it has now been proved that <(i£*,P*)> is a Stone ring. The closure
of Q in K* is (order-isomorphic with) the reals R. Using t for the
induced norm in ϋΓ* we have

( e ) t(rx) = I r I t(x) for all r in R.
R is contained in the center of K* and so <X*,P*> is an algebra
over the reals. For the sake of completeness we list Kadison's axioms
for an Archimedean ordered algebra. Each is obviously satisfied by
<X*,P*> with e = l.

1. K* is a real algebra with unit e.
2. P* is closed under addition, multiplication, and multiplication

by positive reals.
3. For every x in K* there exists a positive real r with re > x.
4. If re 2: # for all positive real r, then ίc^O.

An Archimedean ordered algebra is complete if and only if it is
complete in our norm t. Thus ζK*,P*y is a complete Archimedean
ordered algebra. Collecting results of Propositions 1, 2, and 3 and
applying Theorem 3.1 of Kadison we get our Theorem 1.

Now we are ready to prove the corollary. As we remarked earlier,
Harrison showed that a prime P satisfying the hypotheses there is also
(AC). By Proposition 2, PN is also a prime. Now identify each of
<iΓ,P>,<iί^,P^>,<iί*,P*> with its imbedding in <C(X), P(X)>, so
that PiPjv) is the set of all nonnegative functions in K(KN). The
proof is completed by showing that X is a singleton. Suppose that
x and y are distinct points of X. Since X is normal and KN is dense
in C(X), Urysohn's lemma guarantees that there is a function / in
Kx with f(x) > 0, f(y) < 0. Then Pf = {g; g e KN and g(x) ^ 0} is a
preprime in K^ containing PN and /, while / is not in PN. This
contradicts the primality of PN and the corollary is proved.

Two EXAMPLES. 1. Example of a ring <ϋΓ, P> where all the
conditions of Theorem 1 hold for P except the Archimedean condition.
Let K be the ring of all 2 x 2 real matrices, P the set of matrices
with every entry nonnegative.

2. Example of a ring ζK', P')> where P ' satisfies all except the
condition (AC). Put Kf equal to the set of all triangular 2 x 2
matrices over R and let Pf be the subset consisting of 0 and all
matrices with strictly positive diagonal entries. Thus if either of the
Archimedean conditions is omitted then commutativity cannot be
deduced.



A NOTE ON DAVID HARRISON'S THEORY OF PREPRIMES 19

REFERENCES

1. D. W. Dubois, On partly ordered fields, Proc. Amer. Math. Soc. 7 (1956), 918-930.
2. D. K. Harrison, Finite and infinite primes for rings and fields. (Mimeographed
preprint)
3. R. V. Kadison, A representation theory for commutative topological algebra, Memoirs
of Amer. Math. Soc. No. 7 (1951).

Received April 28, 1966.





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
H. SAMELSON

Stanford University-
Stanford, California

J. P. JANS

University of Washington
Seattle, Washington 98105

J. DUGUNDJI
University of Southern California
Los Angeles. California 90007

RICHARD ARENS

University of California
Los Angeles, California 90024

E. F. BECKENBACH

ASSOCIATE EDITORS
B. H. NEUMANN F WOLF K. YOSIDA

SUPPORTING INSTITUTIONS
UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL ORDNANCE TEST STATION

Printed in Japan by International Academic Printing Co., Ltd., Tokyo Japan



Pacific Journal of Mathematics
Vol. 21, No. 1 November, 1967

Friedrich-Wilhelm Bauer, Der Hurewicz-Satz . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
D. W. Dubois, A note on David Harrison’s theory of preprimes . . . . . . . . . . . . 15
Bert E. Fristedt, Sample function behavior of increasing processes with

stationary, independent increments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Minoru Hasegawa, On the convergence of resolvents of operators . . . . . . . . . . 35
Søren Glud Johansen, The descriptive approach to the derivative of a set

function with respect to a σ -lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
John Frank Charles Kingman, Completely random measures . . . . . . . . . . . . . . 59
Tilla Weinstein, Surfaces harmonically immersed in E3 . . . . . . . . . . . . . . . . . . . 79
Hikosaburo Komatsu, Fractional powers of operators. II. Interpolation

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Edward Milton Landesman, Hilbert-space methods in elliptic partial

differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
O. Carruth McGehee, Certain isomorphisms between quotients of a group

algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
DeWayne Stanley Nymann, Dedekind groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Sidney Charles Port, Hitting times for transient stable processes . . . . . . . . . . . 161
Ralph Tyrrell Rockafellar, Duality and stability in extremum problems

involving convex functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Philip C. Tonne, Power-series and Hausdorff matrices . . . . . . . . . . . . . . . . . . . . 189

Pacific
JournalofM

athem
atics

1967
Vol.21,N

o.1


	
	
	

