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OF A SET FUNCTION WITH RESPECT
TO A o-LATTICE

S. JOHANSEN

This paper contains a definition and a construction of a
Radon-Nikodym derivative of a g-additive set function with
respect to a measure on a cs-lattice, that is, a family of sets
closed under countable unions and countable intersections.
This derivative is characterized in terms of its indefinite
integral, and it is shown how the conditional expectation of
an integrable random variable with respect to a s-lattice, as
defined by Brunk, can be obtained as a Radon-Nikodym
derivative of the set function determined by the indefinite
integral of the random variable,

The so-called descriptive approach to the theory of Radon-Nikodym
derivatives tells us that if ¢ is a finite g-additive set function defined
on a o-field .o~ and if p is a positive measure, then there exists an o
measurable function f such that for all Be.o and Ce.o” we have

pBN[f<a) <auBn[f<a]), ackR,
and
pCN[f>b)=zbuCnIf >0), beR.

The inequalities easily imply that the function is unique and finite ¢
almost surely.

It turns out that if 7 is a o-lattice, and if ¢ is a finite o-additive
set function defined on sets of the form BN C, Be #,Ce _#°, then
exactly the same construction can be used to give a function, which
is _# measurable and satisfies the two inequalities above with Be _#
and Ce . #7°={A|A°c _#}. The main fact we need is, that the
Hahn decomposition remains valid for the set function . This was
remarked already in [3], where a similar idea was used to discuss the
conditional expectation on n-dimensional euclidian space. By means of
this approach it is easy to obtain a proof of the (closed) martingale
convergence theorem for c-lattices and to identify the limit function;
in fact the proof by Andersen and Jessen [1] can be applied without
any change. See also [2] and [5].

1. The Hahn decomposition. Let 2 be an abstract space, and
let o7 be a o-field of subsets of 2. Let _# be a o-lattice of sets from
v, such that @ e 27 ,0Q¢ #. Define & ={A:A=BnNC,Be 7,
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Ce _#°. Let v be a o-additive set function defined on .& with values
in [—oo, 4 0o].

A set Be_# is called positive, if for all Ce_#¢, we have
v(BNC)=0. A set Ce_»° is called negative if for all Be .2 we
have ¥(BN C) < 0. Let <2 be the family of positive sets and let ¢~
be the family of negative sets, then @ ¢ 4" N &7, and & and _s~ are
closed under countable unions. A set C,e _¢" is called minimal if vC, =
inf,e - vC and B,e _# is called maximal if vB, = supze-vB. It is
easily seen that there exists as well minimal as maximal sets. We
now need the following theorem.

THEOREM 1. If v < +oo and if A is a maximal set then A° is
negative, and in fact minimal.

COROLLARY (Jordan-Hahn decomposition). There exists a maxi-
mal set A*e _# and a minimal set A~ e #° such that A~ = (A*)°
and

v A+ NC)=0, Ce #7°,
VA NB)<0, Be 7 .

Proof of Theorem 1. The proof which is given here follows in
details the proof given in Halmos [4] (p. 122), for the ordinary Hahn
decomposition. Let A be a maximal set, then »(4) < + « and we
assume that A° is not in _#~. Then there exists a set B,e _# such
that v(A4°NB) > 0. There must be sets Cec._~° such that
v(4A°N B,N C) < 0, since otherwise A U B, would be €.Z7 and have
measure larger than A. Let therefore &, be the smallest integer such
that there exists C,e _~° with the property v(4°N B,NC,) = —1/k,.
Having defined C;, and B, = C: 1 =1, ..., n — 1, we still have

U(AcmBomBlﬂ M mBn—-1)>Oy

but again we can find the smallest integer k, such that there exists
C, with the property v(A°nB,NBN--- NB,_NC,)= —1/k, In
this way we construet an infinite sequence C,, n = 1.

From

— 0 <D<ACHBOOQC">:%y(AanonBlm e mBn—lmcn)

—1/k,

IIA
M3

n=1

we get that k,— . Let F =>,B,. To show that FUA is
positive we evaluate for Ce 7
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V(F UANC)=vANnC) +vAaNF N0,
but v(ANC) =0 and

WA N F 0 0) =limy(4nCn ’frleQ > lim (—1/(k, — 1)) = 0 .

Finally
WA N F) :U(A°ﬂBomﬁBn> — W(A°N By —u<A°nBongCn>>0

which implies that AU F ¢ & and v(A U F') > v(A), contradicting the
maximality of A. Hence it is established that A°e _s~ and it is easily

seen that A° is minimal.

2. The derivative. Let there be given a set function ¢ on #
such that ¢ is finite, ¢ is cg-additive and such that o(C) = 0,Ce_~7"°.
Let p be a measure on &, i.e. ;((A) =0, Ae .7 , 1t o-additive.

For each ac R let v, = @ — ap. Then we have for a > 0 that
—co <y, < +oo, and if we define a positive maximal set A} then
A; = (A})° is negative for vy, by Theorem 1. If a < 0 we can choose
AF = 0,A; = @. Now define a function f in the following way:

f(w) = sup {r | » rational, we A;}.

Clearly f is defined on all of @ and f = 0. Further |f > a] =
U 47 if a=0and |f > a]l = Q2 if a <0, which proves that f is

measurable _7 .
The sets A are not in general decreasing in a but we could choose

them to be as the following proposition shows:

ProposiTiON 1. For all a the set [f > a] is a positive set for v,
while for a = 0 it is maximal.

Proof. For a < 0 the assertions are trivial. Let a = 0, then for
r > a, A is positive for y,, since

V(ArNC) =z (AinC) =0, Ce.Z°.

But the system of positive sets is closed under countable unions,
which proves the first statement.

Now let a > 0, to see that [f > a] = U,». 4F is maximal, we
first compare UJi_, A/, with A;, where r; is an enumeration of the
rationals greater than a and ¢, = min,;, 7; | a for n— c. From the
inequality

0=y (4;NA) =y, (A5NA;)=0
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we get, that u(4f NA;)=04=1,...,n, and hence that

r(Uasnag)=o.
Therefore

n

0= v (Uaina;)=»,(04;n4;,)=0

which yields

(1) v(4;) = »(U 47) -

We now compare A; with A; as follows:
(2) 0=vy,(A7 NA4]) =v(A47NA;) =0
and 0 < y,(A47) which implies that

(AL (1 47) S pAD S S p(An) =0 < eo .

Finally we have

0 < v.(4F N A7) = v, (A5 N A7) + (¢, — a)p(AT N AZ)
é (qn - a)c .

(3)
Combining the evaluations (1), (2) and (3) we get
5(40) 2 (U 45) = ».(47,) 2 2.45) — @, — ae.

Letting n— < we get, that ¢, | a and

v(4) = (U A1) = »lf > al,

which proves that [f > a] is not only positive but also maximal for
Y

DEFINITION 1. If @ is a finite o-additive set function on & and
if p¢ is a measure on .7, then we call f a derivative of ¢ with respect
to ;£ on 7 if fis an extended real valued function defined on 2, and
if
(1) f measurable 7,

(2) eBN[f<d) =bdu(BN[f <b]),Be.#Z,beR,
(3) oCN[f>al)zaCN[f >al),Ce.Z° acR.

THEOREM 2. If @ is a finite o-additive set function defined on
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F and if p s a measure on Z, then there exists a derivative f of
@ with respect to pron 7. Any derivative is finite i almost surely,
and if g and h are two deritvatives themn plh <a <b<g]l=0, i.e.
if p is defined on o7 then plh -+ g] = 0.

Proof. According to Theorem 1 we can find a maximal set Af
and a minimal set A; such that Ay = (47)°. We define o™ and p* as
the contraction of ¢ and g to A, and we define o~ and g~ as the
contraction of —¢ and y to A;y. Then we can construct a function
f* defined on Af, and measurable .~ by means of " and pg* as
indicated in the beginning of this section. We also construct f— from
@~ and g~ such that f~ is defined on A; and measurable _.Z°.

Now define f as follows:

fH(w), weA;,

flw) = {—f“(a)) s we Ay .

‘We then have

[f*>a]l, a=0,

[f>a]:{Aa*U[f”<—a], a<0,

which proves that f is measurable .7 .

To prove (2) and (3) of Definition 1, we remark that for a =0
we have [f > a] = [f+ > a] which by Proposition 1 is positive for
@t — ap”, hence

PCNALf >al) =9 (C AL >a) Z ap (CNALF* > a))
= ap(CN[f > al).

For a > 0, we have that [f > a] = [f* > a] is maximal for p* — ap*
and then by Theorem 1 [f* < a] is negative for o — au*, hence

PBNIf =a]) =pBNAY) + pBNA N[ =al)

S BN[ff=a) =apt(BN[f=al)
apBN AT N[f =a]) s aq(BN[f =a].

Il

For a 1 b we get (2) for b > 0. Similarly we prove (2) for b < 0 and
3) for a < 0, by means of the properties of f~. This proves the
existence of a derivative. To see, that any derivative is finite we
note, that for ¢ > 0 we have

apl| f1>al = olf > a] = olf < —a] = p(AF) — p(A7) < +oo

and for a — « we get the result.
Finally, let 2 and ¢ be any two derivatives, then
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bulh <a<b<gl=gplh<a<b<ygltaph <a<b<yg],

which implies, that all terms are 0.
The following theorem relates the function ¢ to the indefinite
integral of its derivative. Let @,, 7 and @; be defined as follows:

PlA) = p(AN[—c0 <F <O +p(AN[0 < f< +eo]), AesF,
PHA) = p(AN[f = +eo]) , Ae 7,
P (A) = —p(AN[f = —)) , Ae 7.

THEOREM 3. If f is a derivative of ¢ with respect to pon 7,
where p is a measure on 7, then f is integrable and

(1) ¢G<C>z§fdu,0e%v,
[1]
(2) %(B)égfd/x,Bew%
(3) @la<f<bl=|  flpacRkbeRr,
[a<f<b]
(4) 9#(C)=0,Ce. #Z°, 9;(B) =0,Be 7.

Proof. Define for k = 0,0 <1 and b >0 A4, = [bo*" < f < bp*].
Then

PACN10 < F<b) = [p(CN A = 5, 0be(C 1 4)
= ‘Okgé SOﬂAkfd# - pgon[o<f<b1fdy )

For o | 1 we get

(4) pcno<s<eyz| g
In the same way we prove

(5) pCnl-b<f<opz| g,
(6) pBOl0<s<sy=| g,
(7) puBOl-b<f<op=| fp.

From these inequalities follows the integrability of f, and the
assertions (1), (2) and (3) of the theorem.
Finally we have

pCNlf>a) zaepuCnlf>ah =0, a>0,
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and
pBN[f<—a) S —auBN[f<—-e)=0, a>0,

and for ¢ — <= we get (4).

Notice, that nothing is said about ¢ on the set [f = 0], so that
the 4 results will not characterize the derivative. (f = 0 will always
satisfy (1) — (4).) If however pt < + oo, then Theorem 4 below tells
us, that (BN [f=0])<0,Be _# and oCN[f=0])=0,Ce_z7,
hence we can replace ¢, of Theorem 3 by ¢ contracted to the set
[l fl < +<]. In this case it is easily seen that if f is integrable
then (1) through (4) implies (2) and (3) of Definition 1, so that we
can characterize the derivative in terms of its indefinite integral.

THEOREM 4. If p < +co we can characterize a derivative of @
with respect to p on .~ as a function f defined on Q such that

(1) [ measurable 7,

(2) pBN|f=a)) =auBN[f=al),Be Z,aeR,

(3) pCnlfzd)=zdbuCnif=0b]ph,Ce._~°,beR.

Proof. We just apply facts of the type
[f>a]l | [fzb], albd

and
[fzal T[f>0], alb.

3. The minimizing property of the derivative. We want to
prove, that the derivative constructed here has the minimizing property,
which Brunk has used as the definition. Let therefore X be a real
valued measurable function on (2, .97 p), such that g | X |dy < 4 oo,
Define ¢ as ¢(4) = S Xdp, Ae o7, We can now apply the preceding
theorems to the setu;;1 (2, &, 1, ). We denote a derivative of ¢ with
respect to ¢t on 7 by E(X | _#'), which we shall call the conditional
expectation of X given .. Notice, that p dominates ¢, so that
any .~ measurable function, which is g almost surely equal to a
derivative, is itself a derivative. It is natural in this case to denote
by E(X |_#) the p-equivalence class which contains the derivative
defined earlier. We have thus defined the conditional expectation as
aprojection in L, = L(2, .27, 11). We want to prove the following theorem
(see Brunk [2], Theorem 3.1.)

THEOREM 5. If Xe L, N L2, %7 ), then Y = EX | _#Z) is an
A -measurable function defined on 2 which s characterized by the
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following conditions:
(1) YeL, N L,
(2) SXZd;z < SYZd;z, Z measurable 7, Ze L, 0 L,

(3) SXZd;z = SYde, Z measurable ¢, Ze L, N L,
(4) SXYd;z - SYZd;z.

Furthermore Y minimizes the expression S(X — Z)dp among all
ZeL, N L, which are measurable _. .

Proof. It is easily seen by writing Z = Z+ — Z~, that it is
enough to prove (2) and (3) for Z = 0. It is also enough to prove
the theorem for ¢ such that (C) = 0,Ce._~Z°, that is for Y = 0.

It follows from Theorem 3 that Y e L,. Hence if Xe L,, we have
Y, = E(X*| 7)€ L.

We now prove that

(8) pY*>Y,]=0.

This inequality clearly implies, that Y e L,. To prove (8) it is enough
to see, that for all ¢ =0 and b =0 the set A =[Y >a>b >V, |
has ¢+ measure 0. We have from the definition of Y and Y,, that
[Y >ale # and [V'Y, <b]=][Y,<b]e.Z°. Hence

g Xdp = ap(A) ,
4
and
S Xtdp < bu(A) .
4

But we also have
<S Xol;z)2 =< S ngyg ldp = S X*dpp(A)
A 4 4 4

which imply, that p(A) = 0.
Now let Z =0,Zc¢ L, N L, and Z measurable .. For a>1
we define

Z,= > (@ —aI|Z > a].
We have Z, < Z <aZ,and |Z, — Z| < |Z|(1 — 1/a). Applying the
definition of Y we easily get

XZadyng Zdy, Be.#, beR.

SBn[Z>o]n[Y<b] BN[Z>01N[¥<b]
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For a | 1 we obtain

(9) XZdyng Zdy, Be.# , beR.

SBD[Y<I)_I BN[Y<b]

Since both terms are finite we can let b | 0 and we get for B =
[Y = 0], that

(10) X[Y:M XZdp < 0.

" If we choose p >1,b = p""', B=]Y = p"], then we get from (9)
at

(1) S XZdp < S YZdy .
[¥>o0] 0]

r>

Now (10) and (11) implies (2), and (8) is proved analogously.
From Theorem 3 we get, that

Xdp = S Ydp .

S[P”§Y<p”+1] [pr<¥Y <pnt1]

By multiplication with o" and summation over n we get for p | 1

that (4) holds.
The last assertion now follows from

(12) S(X _Zydp = S(X — Yydu
+ |7 = zyap + 2[x - V(Y - Z)ap,
since
S(X Y)Y — Z)dp = —S(X —Y)Zdp =0,

Further let Z, be any _# measurable function satisfying (1)
through (4) of Theorem 5, then Z, minimizes S(X — Z)dp and from
(12) we get for Z = Z,, that Z, = E(X | #') and, hence, that the
conditions of Theorem 5 actually characterize E(X | _#).
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