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This is a continuation of an earlier paper *'Fractional
Powers of Operators" published in this Journal concerning
fractional powers AΛ, ae C, of closed linear operators A in
Banach spaces X such that the resolvent (λ + A)"1 exists for
all λ > 0 and ?{λ + A)"1 is uniformly hounded. Various integral
representations of fractional powers and relationship between
fractional powers and interpolation spaces, due to Lions and
others, of X and domain D(Aa) are investigated.

In § 1 we define the space D°(A), 0 < ( j < c χ ) , l g p g o o or p =

co —, as the set of all x e X such that

Xσ(A(X + A)~x)mx e LP(X) ,

where m is an integer greater than σ and LP(X) is the Lp space
of X-valued functions with respect to the measure dX/X over
(0, oo).

In §2 we give a new definition of fractional power Aa for Re
a > 0 and prove the coincidence with the definition given in [2].
Convexity of 11 Aax \ | is shown to be an immediate consequence of the
definition. The main result of the section is Theorem 2.6 which says
that if 0 < Re a < σ, x e D* is equivalent to Aax e D/~Reα. In par-
ticular, we have AReα c D(Aa) c D£eΛ For the application of fractional
powers it is important to know whether the domain D(Aa) coincides
with Dpea for some p. We see, as a consequence of Theorem 2.6,
that if we have D(Aa) = Dfa for an a, it holds for all Re a > 0.
An example and a counterexample are given. At the end of the sec-
tion we prove an integral representation of fractional powers.

Section 3 is devoted to the proof of the coincidence of D% with
the interpolation space S(p, σ/m, X) p, σ/m — 1, D(Am)) due to Lions-
Peetre [4]. We also give a direct proof of the fact that Dp(Aa)• =

In §4 we discuss the case in which —A is the infinitesimal
generator of a bounded strongly continuous semi-group Tt. A new
space Cptm is introduced in terms of Ttx and its coincidence with Dp
is shown. Since CZ,mi a Φ integer, coincides with Cσ of [2], this
solves a question of [2] whether C° = D° or not affirmatively. The
coincidence of C£w with S(p, σ/m, X; p, σ/m — 1, D(Am)) has been shown
by Lions-Peetre [4]. Further, another integral representation of frac-
tional powers is obtained.
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90 HIKOSABURO KOMATSU

Finally, §5 deals with the case in which —A is the infinitesimal
generator of a bounded analytic semi-group Tt. Analogous results to
§4 are obtained in terms of AβTtx.

1. Spaces Dζ. Throughout this paper we assume that A is a
closed linear operator with a dense domain D(A) in a Banach space X
and satisfies

(1.1) || λ(λ + A)-1 \\^M, 0 < λ < oo .

We defined fractional powers in [2] for operators A which may not
have dense domains. It was shown, however, that if Re a > 0, Aa is
an operator in D(A) and it is determined by a restriction AD which
has a dense domain in D(A). Thus our requirement on domain D(A)
is not restrictive as far as we consider exponent a with positive real
part. As a consequence we have

(1.2) (λ(λ + A)~ι)mx —> α, X —> oo, m = 1, 2,

for all x e X. As in [2] L stands for a bound of A(X + Ay1 = I —
X(X + A)"1:

(1.3) \\A(X + A)-11| ^ L , 0 < λ < oo .

We will frequently make use of spaces of X-valued functions f(X)
defined on (0, oo). By LV{X) we denote the space of all X-valued
measurable functions f(X) such that

G oo \ lip

\\f(X)\\HX/X)) < oo i f l 5 Ξ p < oo
l l / I U - = S U P | | / ( λ ) | | < c o i f ί , = o o .

0<λ<oo

We admit as an index p — oo - . L°°~(X) represents the subspace of

all functions /(λ) e L°°(X) which converge to zero as λ —+ 0 and as

λ —+ oo. Since dX/X is a Haar measure of the multiplicative group

(0, oo), an integral kernel K(X/μ) with \ \K(X)\dX/X < co defines a
Jo

bounded integral operator in LP(X), 1 ^ p ^ oo.
DEFINITION 1.1. Let 0 < σ < m, where cr is a real number and

m an integer, and p be as above. We denote by Όζm — D^m(A) the
space of all xeX such that λσ(A(λ + A)~ι)mx e LV(X) with the norm

(1.5) || x I!*- = || a? | | x + || λσ(A(λ + Ayψx | | zp ( j r ) .

Z?£,i and D»_fl coincide with Da and D j of [2], respectively.
It is easy to see that Z)£m is a Banach space. Since (A(λ + A)~ι)m

is uniformly bounded, only the behavior near infinity of (A(X + A)~ι)mx
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decides whether x belongs to Όζm or not.

PROPOSITION 1.2. If integers m and n are greater than σ, the
spaces D£w and D£w are identical and have equivalent norms.

Proof. It is enough to show that D^m — D°>m+1 when m > σ.
Because of (1.3) every xeD°m belongs to D£m+1. Since

— (λw(A(λ + A)-1)™) = mXm-\A(x + A)-y+1 ,
dX

we have

(1.6) Xσ(A(X + Ayψx = mXσ-m\λμm-σμσ(A(μ
Jo

This shows

g m ||| X°(A{X + A)~γx |
m — (7

DEFINITION 1.3. We define Z)^, σ > 0 , l ^ p ^ c o , as the space
DptfΛ with the least integer m greater than σ. We use #£($) to denote
the second term of (1.5), so that Df is a Banach space with the norm
|| a? || + ql{x).

PROPOSITION 1.4. If μ > 0, /i(// + A)-1 maps Z)^ continuously into
D°+1. Futhermore, if p g oo— f we have for every xeD£

(1.7) ^ ( ^ + A)-1^ -> x (J9;) as

Proof. Let α; e i)pσ. Since

^ ^ || λ(λ + A)"11| || A(μ + A)"11| || Xσ(A(X +

+ A)~\τ belongs to i)p

CΓ+1.

Let p ^ oo - . If x e D(A), then

(A(X + A)~

= (A(λ + A)-1)^ - (A(λ + A)-1)w(// + A)-xAa;

converges to (A(λ + A)-1)wx uniformly in λ. On the other hand,
(A(λ + A)~ι)mμ(μ + A)"1 is uniformly bounded. Thus it follows that
(A(λ + Ay^μiμ + A)"1^ converges to (A(λ + A)-1)^^ uniformly in λ for
e v e r y α? e X S i n c e || λ σ ( A ( λ + A)-1)mμ(μ + A)~ιx \\^M\\ Xσ{A(X + A)~ι)mx ||,
this implies (1.7).
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THEOREM 1.5. ΰ c ΰ ; if a > τ or if σ = τ and p <; q. The

injection is continuous. If q S °° —, Dp is dense in D*.

Proof. First we prove that Ώζ, p < oo 9 is continuously contained
in DZ-.

Let xeDp. Applying Holder's inequality to (1.6), we obtain

m II μ\A(μ + Ayψ^x j | Λ x ) ,
)

G)p

where p' = p/(p — 1). Hence x e D£. Considering the integral over
the interval (μt λ), we have similarly

|| X°(A(X + A)~ψx || g i ζ l

m Λ _ if^
((m - σ)p ' ) w V λ

The second term tends to zero as /.«—> oo uniformly in λ > μ and so
does the first term as λ —• oo. Therefore, x e D^_.

Since λσ(A(λ + Ayψx e L*(X) Π ̂ °°~(X), it is in any L*(X) with
P ^ Q < °°.

If τ < σ, DZ is contained in D/ for any q. Hence every D° is
contained in D*.

Let q S °° —. Repeated application of Proposition 1.4 shows that
Dq+m is dense in Ότ

q for positive integer m. Since ΰ ; contains some
Dg

T+m, it is dense in Dg

τ.

2. Fractional powers. If x G Aσ, the integral

(2.1) Alx = χ ^ ( m ) (V-
Γ(a)Γ(7n — a) Jo

χ ^ ( V ^ A ί λ +
Γ(a)Γ(7n — a) J

converges absolutely for 0 < Re a <i σ and represents a continuous
operator from Aσ into X. Moreover, A x is analytic in a for
0 < Re a < (7.

A£x does not depend on m. In fact, substitution of (1.6) into
(2.1) gives

A = Γ(m)m f- μ»-i(A(μ + Ayψ+1xdμ
Γ(a)Γ(m - α) Jo p v v^ ; ;

Γ(a)Γ(m + 1 - a)

This shows that A"x depends only on x and not on Aσ to which x
belongs.
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Obviously we have

(2.2) Aί(μ(μ + A)~Y+1x = (μ(μ + A)~ψ+1Aa

σx, x e Aα .

Since the left-hand side and (μ(μ + A)"1)™*1 are continuous in X, and
(μ(μ + Ay1)™*1 is one-to-one, it follows that Aa

σ is closable in X. In
view of Theorem 1.5 the smallest closed extension does not depend on
a.

DEFINITION 2.1. The fractional power Aa for Re a > 0 is the
smallest closed extension of Aa

σ f or a σ ^ Re a.

PROPOSITION 2.2. If a is an integer m > 0, Aa coincides with
the power Am.

To prove the proposition we prepare a lemma.

LEMMA 2.3. / / m is an integer m > 0,

(2.3) Amx = s-lim m \*Xm-\A{X + A)-1) m+1xdx .
iV JO

Proof. By (1.6) we have

m Γλ^C^λ + A)-γ+1x = Nm(A(N
J o

If x e D(Am), Nm(A(N + A)-1)7^ = (iV̂ JV + A ) " 1 ) ^ ^ tends to Amx as-
j V ^ oo by (1.2). Conversely if Nm(A(N + A ) " 1 ) ^ = Am(N(N + Ayψx
converges to an element y, xeD(Am) and y = Awx. For Aw is closed
(see Taylor [5]) and (N(N + A)-1)mx converges to x.

Proof of Proposition 2.2. If xe A σ, σ > wι, integral (2.3) con-
verges absolutely. Therefore it follows from Lemma 2.3 that x e D(Am)
and Aax = Amx. Thus Am is an extension of Aa. Conversely if
xeD(Am), then μ(μ + A)-1^ e D(Am+1) c DΓ-ί1 and we have

Aa(μ(μ + Ay')x =
—> Amx a s μ—> co m

Since /̂ (/i + A)"1^—>x, it follows that xeD(Aa) and Aα& = Am.τ.
The fractional power Aa defined above coincides with A+ defined

in [2]. In fact, if m = 1, integeral (2.1) is the same as integral (4.2)
of [2] for n = 0. Thus

(2.4) Aα£ = A%x

holds for 0 < Re < 1 if x e D(A). If x e D(Am), m ^ 1, both sides of
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(2.4) are analytic for 0 < Re a < m, so that (2.4) holds there. Since
flΓcΰ(4m)cΰ:_ by Lemma 2.3 and (1.2), both A& and A% are the
smallest closed extension of their restrictions to D{Am), m>Rea.
Thus we have Aa = Aa+ for all Re a > 0.

Consequently we may employ all results of [2]. In particular,
fractional powers satisfy additivity

(2.5) Aa+β = AaAβ , Re a > 0, Re β > 0

in the sense of product of operators and multiplicativity

(2.6) (Aa)β = Aaβ, 0 < a < π/ω, Re β > 0 ,

where ω is the minimum number such that the resolvent set of —A
contains the sector

I arg λ I < π — ω .

Such an operator is said to be of type (ω, M(Θ)) if

sup II λ(λ + A)'11| <£ M(θ) .
!argλl=θ

Any operator with a dense domain which satisfies (1.1) is of type
(ω, M(θ)) with 0 ̂  ω < π.

Some properties of fractional powers, however, are derived more
easily through definition (2.1).

PROPOSITION 2.4. If 0 < Re a < σ, there is a constant C(a, σ, p)
such that

/O 7\ II Λocnβ II <T Pins sτ /n\rίσί^y\Realσ II w ||(»--Reα)/σ Λ. C 7^σ

Proof. Holder's inequality gives

- AYYxWdX<
Γ(a)Γ(m - α)

+ J ^ I Xa-° I II Xσ(A(X

Γ(m)
( .Γ(a)Γ(m - a) IL Reα l! " ̂  ((σ

Taking the minimum of the right-hand side when N varies 0 < iV < oo y

we obtain (2.7).

PROPOSITION 2.5. If μ > 0, then

(2.8) D;(A) = Dζ(μ + A)



FRACTIONAL POWERS OF OPERATORS, II INTERPOLATION SPACES 95

with equivalent norms.

Proof. Let x e D;ym(A) with m > σ. Since

|| A\X + μ + A)~mx || ^ C || Am(X + μ + A)~w£ ||&/w

|| (λ + μ + A)~w£ ||ί*-*>/» , k = 1, 2, , m - 1 ,

λσ((μ + A)(λ + μ + A)-ψx

= Xσ(μm + mμm~xA + + Am)(X + μ + AΓwα;

belongs to LP(X). The converse is proved in the same way.

THEOREM 2.6. Let 0 < Re a < σ. Then x e J5^ i / α^d only if
xeD(Aa) and AaxeD^-Rea.

Proof. Let xeD£ and m > σ. Clearly xeD(A"). To estimate
the integral

Γ(a)Γ(m — α) Jo

we split it into two parts. First,

1)™^/* + A)~ψxdμ I
I

\\ (A(λ + A ) " 1 ) ^ ||

~V || (A(λ + A)~ψx \\ e Lp .

λ σ

1 ) ^ || dμ/μ

also belongs to L35 because Re a — σ < 0.
Conversely, let Aax e Z^~R e α. If n is an integer greater than Re a,

we have

|| An~a(x + A)"7 11| ^ C || An(x + A)~n \\ (*-Re«)/* || (x + A)~Λ ||Reα/w

Thus it follows from (2.5) that

λσ || (A(λ + A ) - 1 ) ^ ^ II ̂  λσ || An~a(x + A)~% || || (A(λ

^ C"λσ-Reα || (A(λ + A ) - 1 ) ^ ^ |

This completes the proof.
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As a corollary we see that if a is not an integer, Dz> and Z)£_
coincide with Ό° and Ό% of [2], respectively.

THEOREM 2.7. 1/ ί/ie domain D(Aa) contains (is contained in)
Dpea for an Re a > 0, then D{Aa) contains (is contained in) D R e α for
all Re a > 0.

Proof. By virtue of Theorem 6.4 of [2] and Proposition 2.5 we
have D(Aa) = D((μ + A)α) and DReα(A) = DRe"(μ + A), μ > 0, Re a > 0,
so that we may assume that A has a bounded inverse without loss
of generality. The theorem is obvious if we show that Aβ, — oo <
Re β <Rea, is a one-to-one mapping from D(Aa) and D*ea onto
D(Aa~β) and D*ea-Reβ, respectively.

Since D(Aa) = R(A~a), Re a > 0 ([2], Theorem 6.4), and since
Aβ~a = AMr α ([2], Theorem 7.3), the statemant concerning D(Aa) is
immediate.

Let R e / 2 < 0 . Then ^eZ)R e α-R ee if and only if xeD(A~β) and
A~βx e Dpea. Since Aβ is a bounded inverse of A~β, we have a? e DRea~Ueβ

if and only if x is in the image of D R e α by Aβ. If Re β ^ 0, choose
a number 7 so that Re β < 7 < Re a. If # e DR e α~R e β, # belongs to
D(A~β). Thus there is an element y such that a; = Aβy. By the
former part we have A~yx — Aβ~yy e D^ea~RQβ+yΛ Thus y belongs to
Z)p

Reα. On the other hand, if yeD**", then yeD(Aβ) and we have
A~yx = A^-γ2/ e D^-^p+y^ w here E = Aβ?/. Then it follows from the
former part that x belongs to Z)Reα~Reβ.

Theorem 6.5 of [2] is obtained as a corollary.

PROPOSITION 2.8. For every Re a > 0

(2.9) AReα c D(Aa) c DRe_α .

Proof. It is enough to prove it only in the case a — 1. The
former inclusion is clear from Lemma 2.3. The latter follows from
(1.2), for

\(A(X + A)-γx = λ(λ + A)-χ(l - λ(λ + A)~')Ax — 0

for xeD(A) as λ—>c>o.

PROPOSITION 2.9. If there is a complex number R e α > 0 such
that Z>(Aα) = D R e α , then i ) ( ^ ) = D£*β for all Re β > 0. In particular,
D(Aa) coinsides with D(Aβ) if Re a — Re β. Furthermore, if A has
a bounded inverse, Aέί is bounded for all real t, where Aif is defined
in [2].
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Proof. We need to prove only the last statement. Because of
[2], Corollary 7.4 we have

Since D(A1+it) = D(A) = iϋ(A-1), Aα is defined everywhere and closed,
so that it is bounded.

We proved in [2] that the operator A of § 14, Example 6 has
unbounded purely imaginary powers Au. The above proposition shows
that D(Aa) cannot be the same as Dfea for any p.

However, there are also operators A for which D(Aa) coincides
with D**a.

Let X be LP(S, B, m), where B is a Borel field over a set S and
m a measure on B, and let A(s) be a measurable function on S such
that

|arg

f or an 0 ̂  ω < TΓ. Define

ω, a.e.s

for all x(s) e X such that A(s)x(s) e X. Then it is easy to see that A
is an operator of type (ω, M(θ)) if p S °° —, where L~- denotes the
closure of D{A) in L°°. For this operator A we have D(A) — D\, so
that D(Aa) = Df™ for all Re a > 0.

In fact, we have

Therefore,

("ll x(A(x + Ayjxis) \\'d\fx
Jo

• A(sγ • x(s) dπι(s)

A(s)

Any normal operator A of type (&>, M(θ)) can be represented as
an operator of the above type. Therefore, it satisfies D(Aa) — D2

Reα

for Re a > 0. T. Kato [1] proved that this holds also for any maximal
accretive operator A (see J.-L. Lions [3]).

Now let us complete the definition of fractional powers.

THEOREM 2.10. Let 0 <Rea<m. If there is a sequence N3
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such that

y = w-lim Γ ( m ) ΓV-^Aίλ + A)~ψxdX
3-*~Γ(a)Γ(m — a) Jo

exists, then xeD(Aa) and y — Aax.
Conversely, if xeD(Aa), then

(2.10) A«x = β-lim ^ ϊ Γλ^-^λ + A)-ψxdX ,
*-*<*> Γ(a)Γ(m — α)Jo

possibly except for the case in which Im a Φ 0 and Re a is an
integer.

Proof. The former statement is obtained by modifying the proof
of [2], Proposition 4.6. Since (μ(μ + A^ψx e AReα, we have

Aa(μ(μ + A)-γx = JΓ\"-\A{\ + A)~ψ(μ(μ
Jo

= (μ(μ + A)-ψ w-\im
j-*oo

= (μ(μ + Ayψy .

By virtue of (1, 2), it follows that xeD(Aa) and y = Aax.
The proof of the latter statement may be reduced to the case in

which 0 < Re a < 1 and m — 1. Suppose that α? 6 Z>(Aα) and an integer
m > Reα. Substituting (1.6), we have

+ A)-1

= m\
Jo

m — i

Since xeD(Aa)cz D*™, it follows that

^ μ*~\A(μ

+

as

Thus the limit (2.10), if it exists, does not depend on m > Re a.
Next, let Re a > 1 and m ^ 2. Since cceDCA") belongs to D(A),

integration by parts yields

A)-ι)mxdx

s N<X~X (A(N + Ayψ^Ax .[ χ\A(x + AYTAxdX
m — lJo m — 1
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The second term tends to zero as N—> oo because Ax e DiA""1) c D*!?"1.
Therefore, we obtain (2.10) if we can prove it when both a and m
are reduced by one.

To prove (2.10) in the case 0 < Reα < 1 and m = 1 we assume
for a moment that A has a bounded inverse. Then D(Aa) is identical
with the range of A~a, which may be represented by the absolulely
convergent integral:

π Jo

{[2], Proposition 5.1). Employing the resolvent equation and (1.6), we
get

+ A)~ιA~axdX
Γ(α)Γ(l - α)

J J o Γ λ - μ

s i n π α V r λ . - l d λ p « MX + A)-' - μjμ + A)~> χdΓ λ μ

A)~2xdv .
7Γ

It is enough to show that this converges strongly to the identity,
or more weakly that it simply converges, because if it converges, the
limit must be AαA~αx = x.

First of all, we have

{v + A)~"xdv

= [NA(v + A)~2xdv ^X^dxiμ~"(X - μ)~ιdμ .
Jθ J Jo

Changing variables by X = vly μ = vm and integrating by parts with
respect to v, we obtain

I, = ["lα-1dl\1m-α(l - my'dmx
Ji Jo

- [* A(v + A
Jo

— ctx ~ \ A(Nn + A)~ιxn~~Oi~1dn\ m~α(n~1 — m^dm .
Jo Jo

Since n~a~~x \ m^irr1 — m)~~ιdm is absolutely integrable in n and since
Jo

A(Nn + A)~ιx = .τ — Nn(Nn + A)"1^ tends to zero as AT—* oo, the
second term converges to zero as N—* oo.

Next we write
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iv + A)~2xdv

= \N A(v + A)~2xdv (V-Ή
JO

- I 2 + /a

Changing variables as above, we have

I2 = Γ A ( I ; + A)~2xdv\la-1dl\m-a(m - l)-xdm
Jo Jo Ji

= c2N(N + A)- 1^ —• c2x as ^—> oo .

Finally,

pf' ύ^A(v + A)

tends to zero as N—»oo because I A(y + A)~2ίcdy = mN(mN + A)""1^ —
JΛ-

^(iV + A)"1^ tends to zero and m~a \ la~~\m — l)~xdl is absolutely in-
Jo

tegrable.
Next suppose that A has not necessarily a bounded inverse. We

have, for μ > 0,

(Aα - (μ + A)a){μ + A)"ax

λ^-1 A - (λ - μ)*- 1 ^ +

because the integral is absolutely convergent and the equality holds
for all xeD(A) which is dense in X. This shows together with the
above that

Aa(μ + A)~ax = (μ + A)a{μ + A)-ax

+ s-lim smπa([\«~iA + (^(λ^A - (λ - μ)"-\μ + A)
iv-»oo 7Γ VJo J/χ

.(λ + A)~\μ + A)~axd\

ra a) \ y i A i x + A)~^ + A)~aχdx -

3* Interpolation spaces* Let X and Y be Banach spaces con-
tained in a Hausdorff vector space Z. Lions and Peetre [4] defined
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the mean space S(p, θ, X p, θ - 1, Y), 1 ^ p ^ oo, 0 < θ < 1, of X
and Y as the space of the means

(3.1) x = [°u(X)dX/X ,

Jo

where u(X) is a Z-valued function such that

<3.2) Xθu(X) e L*(X) and λ«~^(λ) e L*(F) .

S(p, #, X; p, θ — 1, F) is a Banach space with the norm

(3.3) | | X \\s(p,β,X,p,θ-l,Y)

= inf I m a x ( \\Xθu(X) \\LP(XU \\ λ β - ^ ( λ ) | | Z * ( F ) ) ; α; = Γ u ( λ ) d λ / λ | .

T h e o r e m 3 . 1 . S(p, θ, X; p , θ - 1, D ( A W ) ) , 0 < 5 < l , l ^ p ^ o o ,
coincides with D$m(A).

Proof. By virtue of Proposition 2.5, we may assume that A has
a bounded inverse without loss of generality. In particular, D{Am)
is normed by | |Amx| | . Further, if we change the variable by λ ; =
λ1/m, condition (3.2) becomes

(3.4) Xmθu(X) e Lp(X) and Xm^~l)Amu{x) e LP(X) .

Suppose x e Ώζ and define

u(X) = cXmAm(X + A)-2mx ,

where e = Γ(2m)l{Γ{m))\ Then

Xσu(x) = c(λ(λ + A-ψX'iAix + A)-V)mx G Lp(X)

and

A ( ) (A( A)-Jmx e

Thus u(X) satisfies (3.4) with σ = mι9. Moreover, it follows from

Lemma 2.3 that

[°°u(X)dX/X =
Jo (Γ(?n))2

Therefore, x belongs to S(p, σ/m, X; p, σ/m — 1, D(Am)) .
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Conversely, let xeS(p, σ/m, X; p, σ/m — 1, D(Am)) so that x is
represented by integral (3.1) with an integrand satisfying (3.4). Then

λσ(A(λ + A ) - 1 ) ^ = (A(λ + A)~1)mXσ[O°μ-σμσu(X)dμ/μ

+ (λ(λ + A)-1)mX°

Since both (A(λ + A)-1)7"1 and (λ(λ + A)~1)m are uniformly bounded,
Xσ(A(x + A)-ι)mx belongs to L*(X), that is, x e Dζ.

THEOREM 3.2. Let A be an operator of type (ω, M(θ)). Then

D;(Aa) = D;«(A) , 0 < a < π/ω, σ > 0 .

Proof. It is sufficient to prove it in the case 0 < a < 1, because
otherwise we have A = (Aa)1Ia with 0 < I/a < 1 (see (2.6)). In view
of Theorem 2.6 we may also assume that σ is sufficiently small.

By [2] Proposition 10.2 we have

XσAa(X
π Jo λ2 + 2Xτa cos πa + τ2 α

Since the kernel

0 < σ < 1 ,
1 + 2(λ-1τα) cos πa + (λ-'τ")2

defines a bounded integral operator in LV(X), Dζa{A) is contained in

If a — 1/m with an odd integer m, we have conversely

In fact, let x e D%{Aιlm). Since

m

λ σ A (\ m —I— >4 ^—* — Λ σ I I / /I l/m/o -\ i /I l/ί»\—1\ΛΛ
ΐ = l

where β4- are roots of ( —ε)m = — 1 with sx = 1, and since

Aιlm(εiX + A11™)"1, i = 2, , m,

are uniformly bounded, λσA(λm + A)"1^ e I/P(X). Changing the variable
by λ' = λm, we get λ<7/wA(λ + A^'x e LP(X).

In a general case choose an odd number m such that 0 < 1/m < α.
Since A1/m = (Aα)1/(αm), we have

: Dζ(Aa) c Z);σm(A1/m) c .
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Another less computational proof will be obtained from the Lions-
Peetre theory and Proposition 2.8.

4* Infinitesimal generators of bounded semi-groups* Through-
out this section we assume that Tt, t ^ 0, is a bounded strongly
continuous semi-group of operators in X and —A is its infinitesimal
generator:

(4.1) Tt = exp(- tA) , | | Γ t | | ^ Λ f .

A is an operator of type (τr/2, M(θ)).

DEFINITION 4.1. Let 0 < σ < m, where σ is a real number and
m an integer, and let 1 ̂  p ^ <χ>. We denote by Cζtm — Cζ>m(A) the
set of all elements x e X such that

(4.2) t~σ{I - Tt)
mx e Lp(X) .

As is easily seen, C£m is a Banach space with the norm

Since (I — Tt)
m is uniformly bounded, condition (4.2) is equivalent to

that t~σ(I — Tt)
mx belongs to LP(X) near the origin. In particular,

we have

(4.3) C;, m (A) = ClJίμ + A),μ>0.

CZΛ and C^_a coincide with Cσ and C% of [2], respectively, and
CZΛ consists of all elements x such that Ttx is (weakly) uniformly
Holder continuous with exponent σ.

PROPOSITION 4.2. If xeCζ<m, then x belongs to D(Aa) for all
0 < Re a < σ, and

(4.4) Aax = ——- ["t-^il - Tt)
mxdt, 0 < Re a < σ ,

Ka,m Jo

where

Proof. If 0 < Re a < σ, the right-hand side of (4.4) converges
absolutely and represents an analytic function of a.

If xeD(A), then we have by [2] Proposition 11.4

(V"-^(J - Tty
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= Σ (-i^ίDtV-V- τkt)xdt
k=l JO

= Γ( - α) Σ ( - l)k+1(ΐ)kaAax, 0 < Re α < 1 .
fcl

The coefficient of Aax does not depend on A. Taking A = 1, we see
that it is equal to i£«,m.

Next let 0 < Re a < min (σ, 1) and x e C/m. Then integral (4.4) with
x replaced by μ(μ + A)~ιx, μ > 0, exists and converges to the integral
(4.4) as μ—*oo. Thus Aaμ(μ + A)~ιx converges to the integral (4.4).
Since Aa is closed and μ(μ + A)~ιx —> x as μ —•> oo, it follows that
xGΰ(A α ) and (4.4) holds.

In the general case the assertion is obtained by [2], Proposition
8.4 or by repeating an argument as above.

Lions and Peetre [4] gave another proof when a is an integer.

THEOREM 4.3. C£m coincides with Dp with equivalent norms.

Proof. First we note that

(4.5) (I - Tt)x = AItx , xeX,

where

(4.6) Itx =

Obviously we have

(4.7) \ \ I t \ \ ^ M t , ί > 0 .

Let x e C%m. Then (λ + A)~mx, λ > 0, belongs to C XS since

t-*-m\\(I- Tt)
2m(X + A)~mx\\

Hence we have by Proposition 4.2

ί - Ttf
m{X + A)~mx

S /
(A(x + i)- 1)^-™- 1/:^ - τt)

mxdt

A ) - m r m - x ( i - τtγ
mxdt,(

Ji/λ

where c = K~]2m. Therefore,

i/λS i/λ
ί α r σ | | ( / - τt)

mx\\dt/t
o

i/λ
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This shows that xeD^m.

Conversely, let xeDp>m. Since

(A(X + A)-ymI?x = (λ + A)~m(I - Tt)
m(A(X + A)-γx ,

it follows that It

mx e D%%Z. Thus by Proposition 2.2 we get

(i - τt)
m x = Awir x = cΓλm-i(A(λ + Ay^irx

J

(I - Tt)
mxm-\\ + A)~m(A(X ) ) ,

l/ί

where c —Γ(2m)/(Γ(rn))2. By the same computation as above we con-
clude that xeC£>m.

In particular, C£m does not depend on m. We denote Cpm with
the least m > σ by Cζ. Because of Theorem 2.6, Cz coincides with
Cσ of [2] if <τ is not an integer.

THEOREM 4.4. Let 0 < Re a < m. If there is a sequence ed —* 0
such that

(4.8) y =
Ka

exists, then xeD(Aa) and y = Aα

Conversely, if xe D(Aa), then

(4.9) Aαx = s-lim - J

Proof. The former part is proved in the same way as Theorem
2.10.

To prove the latter part, let us assume for a moment that Tt

satisfies

|Γ , ί > 0 ,

for a μ > 0. Then Aα is the inverse of A~α which can be represented
by the absolutely convergent integral

(4.10) A-ax = [s
Γ(a) Jo

([2], Theorem 7.3 and Proposition 11.1).
Now it is enough to prove that

Ka,m
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converges strongly as ε —> 0, because the limit must coincide with
AaA-ax = x.

We have

J, = [ V ^ ί / - Tt)
mdt[~sa-ιTsxds

Jε Jo

= Σ (-l)k+1(™)ka Γ t-°-\I - Tt)dt [Λ8a"1Tβ
k=l Jkε Jo

Now

ί°°t-«-ιTtdt\*sa-ιTsxds
Jkε Jo

= ["t-'-'dt^is -ty-'T.xds
ikε Jί

Jkε Jkε

= — - — Γ ( s - ke)aTsxds/s .
a(ke)a h* } 8 ι

Furthermore,

Σ (-1)*+1(?) ka ί°° t-'-'dt [ V - 1 7 > d s
Jfc=l J / c ε J o

aea)o

so that we obtain

I. = A - Σ (-l)*(r) Γ(s - kεyT.xds/8 .
αε α *=o Jfcs

Since Γs« —* a; as s —* 0, it follows that

t ( 1 ) (
aεa k=o

Γ) t"(β -
Jfc

f m
)ft(Γ) (s - k)"dsjs

Jfc

On the other hand, the Taylor expansion up to order m gives

2 ( ) ( Γ ) ( ) j s x

fM = Σ. (-iΠΐ)(s -

= t (-D*(Γ) «CgLr_J) («
Λ=O ml
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where 0 < kf < k. Hence we have

-L\~ ft(8)T.xd8/8

^ ( l ) ( ) f c

ml k=0

Since (s — kf)a"ms~1 is absolutely integrable, this converges to a con-
stant times x as ε—*0.

To prove (4.9) in the general case, it is sufficient to show that

(4.11) (Aa - (μ + A)a)(μ + A)-°x

" - 1 ^ ! - Tt)
m - (I - e-^Γ,)*}^ + A)-"xdt ,

// > 0, xeX,

and that the integral converges absolutely.
By Theorem 2.6, (4.5) and a similar decomposition of / — e~μtTt

we have

(J - Tt)
m(I - e-μtTt)

nx = O(£σ), a? e Cί, m + n > σ .

Since (μ + i ) - ^ e D ( i α ) c C α , it follows that

{(/- Tt)
m - (I- e~^Tt)

m}x

- (e-* - ΐ)Tt{(I - Tt)
m~ι + . . . + ( / - e-^T^-^x

__ Q(+min(Rea,m—l)+l\

This shows that integral (4.11) is absolutely convergent. (4.11) is valid
for all xeD(A) which is dense in X. Therefore, (4.11) holds for all
xeX.

5* Infinitesimal generators of bounded analytic semi-groups*
Let Tt be a semi-group of operators analytic in a sector | arg t \ <
π/2 — ω, 0 ^ ω < ττ/2, and uniformly bounded in each smaller sector
I arg 11 g π/2 — ω — ε, ε > 0. We call such a semi-group a bounded
analytic semi-group.

It is known that the negative of an operator A generates a
bounded analytic semi-group if and only if A is of type (ω, M(θ)) for
some 0 g ω < ττ/2β A bounded strongly continuous semi-group Tt has
a bounded analytic extension if there is a complex number Re a > 0
such that

(5.1) \\A«Tt\\^Ct-«™,t>0,

with a constant C independent of t. Conversely, if Tt is bounded analytic,
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(5.1) holds for all Re a > 0 ([2], Theorems 12.1 and 12.2).
We assume throughout this section that —A is the infinitesimal

generator of a bounded analytic semi-group Tt.

DEFINITION 5.1. Let 0 < σ < Re/9 and 1 S P ^ °°. We denote
by Bζtβ = Blβ{A) the set of all xeX such that

(5.2) tRΰβ-σAβTtx e

Bpιβ is a Banach space with the norm

PROPOSITION 5.2. Let 0 < Re a < σ. Then every x e Bζ>β belongs
to D{Aa) and

(5.3) Aax = \°°tβ-(x~ιAβTtxdt ,
V } Γ(β- α) Jo '

where the integral converges absolutely.

Proof. Since AβTtx is of order t°~Reβ as t—^0 and of order
t~Reβ+ε a s ί ->oo in the sense of LP(X), the integral converges absolutely
for 0 < Re a < σ.

To prove (5.3), first let xeD(Aβ). Then it follows from [2],
Proposition 11.1 and Theorem 7.3 that

[°tβ-a-1AβTtxdt

= s-lim \~tβ-a-1e-ttTtA
βxdt

«-o Γ(β - α)Jo

= s-lim(ε + A)a~βAβx
ε->0

= s-lim Aβ~a(ε + A)a-βAax .
ε->o

Because of [2], Propositions 6.2 and 6.3, Aβ~a(ε + A)α~β converges

strongly to the identity on R(A) as ε —> 0. Since AaX is contained

in RζA) ([2], Proposition 4.3), (5.3) holds for all xeD(Aβ). In the

general case (5.3) is proved by approximating x e Bpfβ by (μ(μ + A)-X)mx%

m > Re/3, which belongs to D(Aβ).

THEOREM 5.3. B£β coincides with Dp. In particular, Bpβ does
not depend on /9.

Proof. Let xe Bζs. If m is an integer greater than Re β, x
belongs to B£mf for
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tm~aAmTtx = tm-βAm~βTφ . tβ~σAβTtl2x

and tm-βAm-βTtl2 is uniformly bounded. Since

P*-°A*mTt(x + A)~mx = (A(λ + A)-ψtm-σAmTtx ,

(λ + A)-mx belongs to Bζ$£. Hence it follows from Proposition 5.2
that

Am{X + A)~mx = c [°tmA2mTt(X + A)~mxdt/t
Jo

S i/λ

ΓAm Ttxdt/t
o

+ c(λ + A)~m[ tmA*mTtxdt/t ,
Ji/λ

where c = Γ(m)~\ The rest of the proof is the same as that of
Theorem 4.3.

Conversely, assume that x e D£m = jDp

σ

2w. Since Ttx, t > 0, belongs
to any Dj,m, we have by (2.1)

AβTtx = c ί V - ^ λ + A)~lfmTtxdX
Jo

S l/ί

\*-\A(\ + ΛJ-^
o

+ cAmTt\
Jl/ί

where c = Γ(2m)/(Γ(β)Γ(2m — /9)). Arguing as before, we get x e j?£β.

THEOREM 5.4 Lβί 0 < Re a < Re β. If

(5.4) 2/ = w-lim [° tβ~a~1AβTtxdt

exists, then xeD(Aa) and y — Aax. If xeD(Aa), then

(5.5) Aax = s-lim [°tβ-a-ιAβTtxdt .
K } z->o Γ { β - a ) ) *

Proof. The former part is proved in the same way as Theorem 2.10.
Let us prove the latter assuming that μ — A generates a bounded
analytic semi-group for a μ > 0. D(A") is the same as the range R(A~a)
in this case, and we have AβTtA~ax = Aβ~aTtx by the additivity of
fractional powers. So it is sufficient to prove the following:

(5.6) x = s- l im—— [O°tβ~1AβTtxdtf x e X ,
ε-0 Γ(β) Jε



110 HIKOSABURO KOMATSU

when Re β > 0.
First we note that if Re a > 0, then

(5.7) taAaTtx-^0 a s ί ^ 0 o r a s ί - > o o

for each xe X, because (5.7) holds for x e D(A) and taAaTt is uniformly
bounded.

Let β be equal to an integer m. Since d/dtAβTtx — —Aβ+1Ttx9

we have, by integrating by parts,

= em-1Am-1Tex + (m -

(5.7) shows that the first term tends to zero as ε —> 0 if m > 1. When
m = 1, we have

[°°ATtxdt = Tsx->x as ε —> 0 .

Thus (5.6) holds if β is an integer.
If β is not an integer, take an integer m > Re β. We have

AβTtx = Aβ-mAm7>

X \~ ί > 0 ,

by [2], Proposition 11.1. Therefore,

±^y-^τtxdt

\b — I)
Γ(/S)Γ(m

1

Γ(m)

The first term tends to ^ as £->0. The second term converges to
zero, because

(°Vmd<7 Ϋτβ-
Ji Jo

is absolutely convergent and (εσ)mAmTεσx tends to zero as ε—> 0.
The proof in the general case is obtained from the absolutely

convergent integral representation:
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(Aa -(μ + A)a)(μ + A)~ax

= \*t*-a-\A* - e-^iμ + Aγ)Tt{μ + A)~axdt .
Γ(β — a) Jo

The absolute convergence follows from [2], Propositions 6.2 and 6.3.
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